·论 著·

游泳训练对小鼠胰岛素抵抗及肝脏PPAR-γ信号通路的影响

冯彦景1,李艳君2,刘遂心3*

(1.河北省胸科医院内分泌科,河北 石家庄 050041;2.河北省胸科医院呼吸科,河北 石家庄 050041;3.中南大学湘雅医院康复科,湖南 长沙 410008)

[摘要] 目的 观察游泳训练对小鼠肝脏脂含量及对过氧化物酶体增殖物激活受体γ(peroxisome proliferator activated receptor-γ,PPAR-γ)信号通路的影响,探讨运动改善胰岛素抵抗的作用机制。方法 将31只8周龄健康雄性C57BL/6J小鼠随机分为正常组(n=10)、高脂组(n=10)和运动组(n=11)。采用高脂饮食建立胰岛素抵抗动物模型,运动组给予12周游泳训练。干预前后记录小鼠体重,检测空腹血糖(fasting blood glucose,FBG)和空腹血胰岛素(fasting insulin,FINS),HOMA法计算胰岛素抵抗指数(insulin resistance index,IRI),逆转录聚合酶链反应法检测肝组织PPAR-γ、丙酮酸脱氢酶激酶4(pymvate dehydrogena kinase 4,PDK4)及丙酮酸脱氢酶(pyruvate dehydrogenase,PDH)mRNA表达水平,光镜和电镜观察各组肝脏脂肪含量变化。结果 干预12周后,3组体重均大于干预前,高脂组体重显著大于正常组和运动组(P<0.05)。高脂组和运动组FINS、FBG、IRI明显高于正常组,运动组FINS、FBG、IRI明显低于高脂组(P<0.05)。HE染色显示:高脂组小鼠肝细胞肝细胞呈弥漫性脂肪变性,胞质内充满大量大小不等的圆形脂滴,脂滴绕于胞核周围或胞质一侧,将核挤向一边,有的呈印戒形;运动组小鼠肝细胞胞质内偶见脂滴形成。电镜观察显示:高脂组肝细胞内可见大量脂滴沉积;运动组肝细胞内有脂褐素样物质残留,偶见脂滴沉积。高脂组PPAR-γ mRNA表达低于正常组,运动组PPAR-γ mRNA表达高于正常组,高脂组和运动组PDK4 mRNA表达高于正常组,PDH mRNA表达低于正常组;运动组PPAR-γ mRNA和PDH mRNA表达明显高于高脂组,PDK4 mRNA表达增加低于高脂组(P<0.05)。结论 运动可以改善胰岛素抵抗,可能与减少小鼠肝脏脂肪变性、上调小鼠肝组织PPAR-γ mRNA表达、减少PDK4 mRNA表达、增加PDH mRNA表达有关。

[关键词] 胰岛素抵抗;过氧化物酶体增殖物激活受体γ;游泳

胰岛素抵抗是多种代谢相关疾病如糖尿病、高血压病及冠心病等的共同危险因素[1],其治疗机制是目前研究热点之一。运动是糖尿病治疗的五大处方之一,其有助于改善胰岛细胞功能和胰岛素抵抗,降低血糖水平,其机制可能与调节过氧化物酶体增殖物激活受体γ(peroxisome proliferator activated receptor-γ,PPAR-γ)表达密切相关。本课题组前期研究表明,运动可以上调肝脏、骨骼肌中PPAR-γ的表达和骨骼肌中葡萄糖转运体4 mRNA的表达,从而调节糖代谢[2],但其具体分子机制仍不十分明确。丙酮酸脱氢酶激酶4(pymvate dehydrogena kinase 4,PDK4)和丙酮酸脱氢酶 (pyruvate dehydrogenase,PDH)是参与糖代谢的重要酶系[3]。PDK2/PDK4基因各包含2个PPAR反应元件,表明PDK4是PPAR的下游靶基因之一,可能参与PPAR调控糖代谢过程[4]。目前,有关运动对胰岛素抵抗状态下PPAR-γ与糖代谢相关酶PDK4、PDH之间的关系国内未见报道。因此,本研究采用高脂饮食建立小鼠胰岛素抵抗模型,观察游泳运动对胰岛素抵抗小鼠肝脏组织PPAR-γ、PDK4和PDH mRNA表达的影响,旨在探讨游泳运动改善小鼠胰岛素抵抗的机制,报告如下。

1 材 料 与 方 法

1.1 动物分组及动物模型的建立 采用随机数字表法将31只健康清洁8周龄雄性C57BL/6J小鼠分为正常组(n=10)、高脂组(n=10)和运动组(n=11)。正常组给予基础饲料, 高脂组和运动组给予高脂饲料(0.21%胆固醇和21%猪油)[5],运动组给予游泳训练进行干预。正式运动前适应性运动1周,具体运动方案为每天训练60 min,每周5次,训练12周[6]。游泳池水温(35±1) ℃,水深38 cm。

1.2 取材与方法 干预12周后,禁食12 h过夜,次晨称重后取眼球血,分离血清后-20 ℃冷存用于测定血胰岛素含量。在无菌火酶条件下剪取100 mg肝右叶,-80 ℃保存以备后续逆转录聚合酶链反应(reverse transcription polymerase chain reaction,RT-PCR)检测;另取肝脏左叶切成8 mm 厚的组织块,常规石蜡包埋切片,以备光镜和电镜下观察形态结构。

1.2.1 空腹血糖(fasting blood glucose,FBG)、胰岛素(fasting insulin,FINS)和胰岛素抵抗指数(insulin resistance index,IRI)的计算 用快速血糖仪测量FBG并记录,放射免疫法测量FINS,并计算IRI,IRI=[FBG(mmol/L)×FINS(mU/L)]/22.5。

1.2.2 肝脏组织样品的制备和观察 取肝脏左叶以2.5%戊二醛,固定24 h以上,2%饿酸固定2 h,分别行50%、70%、90%、100%丙酮脱水,每级10 min×3次梯度脱水。经浸泡、包埋成块、修块、定位、超薄切片后进行HE染色和电子醋酸铀、硝酸钳双重染色,光镜和透射电镜观察并照片。

1.2.3 肝组织中PPAR-γ、PDK4和PDH mRNA的检测 取肝脏组织50 mg,置于盛有液氮的研钵中,迅速将组织研磨成粉末状,加入Trizol(50 g/L Trizol计算,样本体积不超过Trizol体积的10%),按照说明提取总RNA,紫外分光光度计测定A260/A280比值,检验纯度,A260/A280比值在1.8~2.0之间。根据GeneBank中查得小鼠目的基因mRNA序列,再通过Primer Premier 5软件设计引物,按照逆转录盒上步骤进行逆转录操作。取cDNA 4 μL作为模板,依次加入100 μm上游引物和下游引物各0.5 μL,2×TaqPCR MasterMixl 2.5 μL,总反应体系为10 μL。2.5%琼脂糖凝胶中加入溴乙锭(10 g/L)使其终浓度为0.5 mg/L,成胶后置于电泳槽,加入0.5×TBE缓冲液,取5 μL PCR产物与l μL载样缓冲液混匀点样,在60 V恒压下电泳40 min。TANON GIS2020凝胶分析仪数码拍照,应用Image-proplus 6.0图像分析软件对结果进行半定量分析。

1.3 统计学方法 应用SPSS 16.0统计软件处理数据。计量资料比较分别采用配对t检验、F检验和SNK-q检验。P<0.05为差异有统计学意义。

2 结 果

2.1 3组小鼠游泳训练干预前后体重比较 干预前,3组小鼠体重差异无统计学意义(P>0.05);干预12周后,3组体重均大于干预前,高脂组体重显著大于正常组和运动组,差异有统计学意义(P<0.05)。见表1。

表1 3组干预12周前后体重比较
Table
1 Weight comparison of three groups before and after 12 weeks intervention

组别小鼠数体重干预前干预后正常组1020.80±2.4026.80±2.50∗#高脂组1020.50±2.6030.00±2.40∗运动组1121.00±2.2027.00±2.20∗#F值0.54416.945P值0.5860.000

*P值<0.05与干预前比较(配对t检验) #P值<0.05与高脂组比较(SNK-q检验)

2.2 3组FINS、FBG、IRI比较 干预12周后,高脂组和运动组FINS、FBG、IRI明显高于正常组,运动组FINS、FBG、IRI明显低于高脂组,差异均有统计学意义(P<0.05),见表2。

表2 3组FINS、FBG、IRI比较
Table 2 Comparison of FINS,FBG and IRI in three groups

组别小鼠数FINS(mU/L)FBG(mmol/L) IRI正常组105.14±2.42 6.91±2.421.69±0.87高脂组1014.00±7.12∗ 9.49±1.28∗5.92±3.24∗运动组1110.17±3.88∗#8.03±1.67∗# 2.57±1.17∗#F值 38.62022.79473.620P值0.000 0.000 0.000

*P值<0.05与正常组比较 #P值<0.05与高脂组比较(SNK-q检验)

2.3 肝脏组织形态学改变 光镜观察:HE染色可见正常组小鼠肝组织结构完整,肝细胞分界清,大小较均一,核圆而清晰,肝窦排列规则,汇管区清晰;高脂组小鼠肝细胞呈弥漫性脂肪变性,胞质内充满大量大小不等的圆形脂滴和印戒形肝细胞;运动组小鼠肝细胞结构正常,胞质内偶见脂滴形成。图1~3。

电镜观察:正常组肝小叶结构清晰,形态正常,肝细胞大小、形态正常;高脂组可见明显肝细胞脂肪变性,肝细胞肿大,胞浆内充满大小不等的脂肪空泡;运动组大部分肝细胞形态正常,少数细胞胞浆稍水肿,细胞内有脂褐素样物质(脂滴被溶酶体溶解消化后的产物)残留,未见明显脂滴。图4~6。

图1 正常组肝脏(HE ×400) Figure 1 Liver in normal group (HE ×400)图2 高脂组肝脏(HE ×400) 注:箭头示脂滴Figure 2 Liver of hyperlipidemia group (HE ×400)图3 运动组肝脏(HE ×400)注:箭头示脂滴Figure 3 Liver in exercise group (HE ×400)图4 正常组肝脏(×5 000)

Figure 4 Liver of normal group ( ×5 000)

图5 高脂组肝脏(×5 000)

注:箭头示脂滴

Figure 5 Liver of hyperlipidemia group(×5 000)

图6 运动组肝脏(×5 000)

注:剪头示脂褐素样物质

Figure 6 Liver of exercise group (×5 000)

2.4 3组小鼠肝脏PPAR-γ、PDK4、PDH mRNA表达比较 高脂组PPAR-γ mRNA表达低于正常组,运动组PPAR-γ mRNA表达高于正常组,高脂组和运动组PDK4 mRNA表达高于正常组,PDH mRNA表达低于正常组(P<0.05);运动组PPAR-γ mRNA和PDH mRNA表达明显高于高脂组, PDK4 mRNA表达增加低于高脂组(P<0.05)。见表3。

表3 3组PPAR-γ、PDK4、PDH mRNA表达
相对光密度值比较
Table 3 Comparison of relative density of expression of PPAR-γ, PDK4 and PDH mRNA in three groups

组别小鼠数PPAR-γ mRNA PDK4 mRNAPDH mRNA正常组101.27±0.26 0.57±0.111.87±0.32高脂组100.95±0.17∗2.12±0.37∗0.68±0.24∗运动组112.37±0.41∗# 1.07±0.25∗# 1.54±0.28∗#F值311.609 418.440222.534P值 0.000 0.000 0.000

*P值<0.05与正常组比较 #P值<0.05与高脂组比较(SNK-q检验)

3 讨 论

本研究结果显示,经12周游泳训练后,与高脂组比较,运动组小鼠体重、FINS、FBG、IRI明显降低,光电镜下观察肝细胞结构正常,胞质内偶见脂滴形成,少数细胞胞浆稍水肿,胞内有脂褐素样物质残留,未见明显脂滴,且运动组肝细胞PPAR-γ mRNA、PHD mRNA表达明显增加,PDK4 mRNA明显表达降低。表明运动干预可以减轻体重,降低血糖,改善高胰岛素血症和胰岛素抵抗,其机制可能与减轻肝细胞脂肪变性、上调小鼠肝组织PPAR-γ mRNA表达、减少PDK4 mRNA表达、增加 PDH mRNA表达有关。

PPAR-γ是调节目标基因表达的核内受体转录因子超家族成员,其调节、活性或表达可能参与胰岛素抵抗发生的分子机制[7]。研究表明,PPAR-γ可增强机体对胰岛素的敏感性[8],调节体内糖平衡,改善胰岛素抵抗。其机制一:PPAR-γ可直接激活磷脂酰肌醇-3激酶/蛋白激酶B,增加外周组织葡萄糖转运体4基因表达,促进心肌及骨骼肌对葡萄糖的转运和摄取,减轻胰岛素抵抗[9]。运动可通过上调骨骼肌PPAR-γ及葡萄糖转运体4 mRNA表达改善胰岛素抵抗,与国外研究一致[10]。其机制二:PPAR-γ可通过调节脂肪细胞分泌的游离脂肪酸(free fatty acids,FFA)、肿瘤坏死因子、瘦素、脂联素等细胞因子改善胰岛素敏感性[11]。脂肪细胞是胰岛素作用的重要靶点和糖脂代谢的主要场所,其分泌的胰岛素抵抗密切相关细胞因子FFA会对胰岛素β细胞产生毒性,加重糖脂代谢紊乱[12]。PPAR-γ主要分布在脂肪组织中,对脂肪细胞的分化有重要调节作用[13],从而改善脂肪细胞的胰岛素抵抗。运动显著增加PPARγ的活性已成为共识,且运动所致的PPARγ激活与其改善糖脂代谢和抑制脂肪细胞分泌的炎症有关。运动合并PPARγ激动剂罗格列酮能显著改善糖尿病大鼠骨骼肌的胰岛素敏感性,促进骨骼肌对糖的摄取[14]。本研究结果显示,高脂组胰岛素抵抗造模成功,运动组小鼠经过12周游泳训练后,电镜观察少数肝细胞胞浆稍水肿,细胞内有脂褐素样物质残帘,未见明显脂滴,FINS、FBG、IRI明显低于高脂组,肝脏脂代谢紊乱及胰岛素抵抗明显改善;且运动组肝脏组织PPAR-γ mRNA的表达水平明显高于高脂组。推测运动改善胰岛素抵抗可能与运动激活肝脏细胞PPAR-γ基因表达、减轻肝脏细胞质代谢紊乱相关。

PPAR-γ还参与糖代谢过程中某些关键酶基因的表达,如增强脂肪组织和骨骼肌中葡萄糖转运体4基因表达,以及抑制PDK4基因表达。目前人类及啮齿类动物PDK鉴定出4种同工酶,其中PDK4与长期糖脂代谢丙酮酸脱氢酶系调控有关[15]。PDK4在具有高度脂肪酸氧化能力和高水平表达脂质氧化转录因子PPAR-γ的组织中(如心脏、氧化型肌肉、肝脏等组织)高度表达,是调节葡萄糖氧化分解过程中的关键限速酶,PDK4可使PDH磷酸化而抑制其活性,阻断丙酮酸进入三羧酸循环,从而抑制葡萄糖氧化作用[16]。丙酮酸脱氢酶系是一个定位于线粒体中的多酶复合体,其活性与胰岛素抵抗密切相关。胰岛素抵抗等条件下,PDK4能够调节骨骼肌丙酮酸脱氢酶系的活性,在调节葡萄糖和脂肪酸代谢的转换中起重要作用[17],机体通过增加PDK4活性,降低丙酮酸脱氢酶系活性,阻碍葡萄糖分解代谢,导致血糖升高。因此,通过抑制PDK4增加PDH的活性也是治疗糖尿病的靶点。Barberio等[18]开发出一种新制剂(PS10和compouND 17或PS46),它是泛PDK抑制剂,PS10和PS46与活性部位结合,并对肝脏中的PDK活性有优先抑制作用,能有效提高丙酮酸脱氢酶系活性,故而有效降低血糖。本研究结果显示,高脂组小鼠肝脏组织PDK4 mRNA表达明显高于正常组。PDH mRNA表达明显低于正常组。表明胰岛素抵抗时存在糖代谢相关酶 PDK4 mRNA和PDH mRNA表达的异常,与国外研究结果一致[19]。本研究运动组小鼠肝脏组织PDK4 mRNA表达明显低于高脂组,PDH mRNA表达明显高于高脂组。表明游泳运动可以使PDK4 mRNA表达降低,PDH mRNA表达增加,游泳运动改善胰岛素抵抗的另一可能机制是通过调节糖代谢相关酶PDK4 mRNA和 PDH mRNA表达而实现的。

本研究初步探讨运动改善肝脂代谢及胰岛素抵抗的相关机制,其中PPAR-γ、PDK4、PDH mRNA表达为半定量分析,有一定局限性,故对于运动改善人类胰岛素抵抗相关机制尚需进一步实验研究证实。

综上所述,运动可以减少肝脏脂肪含量,改善肝脏脂代谢紊乱及胰岛素抵抗,使葡萄糖氧化分解增加,进而改善糖代谢;推测其机制可能与上调肝组织PPAR-γ mRNA的表达、抑制PDK4 mRNA的表达、增加PDH mRNA的表达有关。

[参考文献]

[1] Jaganathan R,Ravindran R,Dhanasekaran S. Emerging role of adipocytokines in type 2 diabetes as mediators of insulin resistance and cardiovascular disease[J]. Can J Diabetes,2018,42(4):446-456.

[2] 张云丽,王林,刘铁民.PI3K/Akt和AMPK信号通路在运动诱导的啮齿动物骨骼肌内GLUT4转位和表达中的作用[J]. 实验动物与比较医学,2017,1(17):76-82.

[3] Dlamini Z,Ntlabati P,Mbita Z,et al.Pyruvate dehydrogenase kinase 4 could be involved in a regulatory role in apoptosis and a link between apoptosis and insulin resistance [J]. Exp Mol Pathol,2015,98(3):574-584.

[4] 王媛琪,李为民.丙酮酸脱氢酶激酶4的研究进展[J].中国循证心血管医学杂志,2018,10(4):511-512.

[5] Sun Q,Xiao X,Kim Y,et al.Imidacloprid Promotes High Fat Diet-Induced Adiposity and Insulin Resistance in Male C57BL/6J Mice[J]. J Agric Food Chem,2016,64(49):9293-9306.

[6] Cunha VN,De Paula Lima M,Motta-Santos D,et al.Role of exercise intensity on GLUT4 content,aerobic fitness and fasting plasma glucose in type 2 diabetic mice[J]. Cell Biochem Funct,2015,33(7):435-442.

[7] Chigurupati S,Dhanaraj SA,Balakumar P.A step ahead of PPARγ full agonists to PPARγ partial agonis:therapeutic perspectives in the management of diabetic insulin resistance[J]. Eur J Pharmacol,2015,755:50-57.

[8] Mohammadi A,Gholamhosseinian A,Fallah H.Trigonella foenum-graecum water extract improves insulin sensitivity and stimulates PPAR and gene expression inhigh fructose-fed insulin-resistant rats[J]. Adv Biomed Res,2016,5:54.

[9] Zhou T,Meng X,Che H,et al.Regulation of insulin resistance by multiple mi RNAs via targetingthe GLUT4 signalling pathway[J]. Cell Physiol Biochem,2016,38(5):2063-2078.

[10] Sylow L,Møller LL,Kleinert M,et al.Stretch-stimulated glucose transportin skeletal muscle is regulated by Rac1[J]. J Physiol,2015,593(3):645-656.

[11] Sato D,Oda K,Kusunoki M,et al.PPARγ activation alters fatty acid composition in adipose triglyceride,in addition to pro-liferation of small adipocytes,in insulin resistant high-fat fed rats[J]. Eur J Pharmacol,2016,773:71-77.

[12] Cohen K,Waldman M,Abraham NG,et al. Caloric restriction ameliorates cardiomyopathy in animal model of diabetes[J]. Exp Cell Res,2017,350(1):147-153.

[13] Han Y,Lee SH,Lee IS,et al.Regulatory effects of 4-methoxychalcone on adipocyte differentiation through PPARγ activation and reverse effect on TNF-α in 3T3-L1 cells[J]. Food Chem Toxicol,2017,106(Pt A):17-24.

[14] Kim JC.The effect of exercise training combined with PPARgamma agonist on skeletal muscle glucose uptake and insulin sensitivity in induced diabetic obese Zucker rats[J]. J Exerc Nutrition Biochem,2016,20(2):42-50.

[15] Dlamini Z,Ntlabati P,Mbita Z,et al.Pyruvate dehydrogenase kinase 4(PDK4) could be involved in a regulatory role in apoptosis and a link between apoptosis and insulin resistance[J]. Exp Mol Pathol,2015,98(3):574-584.

[16] Eoung NH.Pyruvate dehydrogenase kinases:therapeutic targets for diabetes and cancers[J]. Diabetes Metab J,2015,39(3):188-197.

[17] Zhang M,Zhao Y,Li Z,et al.Pyruvate dehydrogenase kinase 4 mediates lipogenesis and contributes to the pathogenesis of nonalcoholic steatohepatitis[J]. Biochem Biophys Rese Commun,2018,495(1):582-586.

[18] Barberio MD,Huffman KM,Giri M,et al.Pyruvate dehydrogenase phosphatase regulatory gene expression correlates with exercise training insulin sensitivity changes[J]. Med Sci Sports Exerc,2016,48(12):2387-2397.

[19] Wu CY,Tso SC,Chuang JL,et al. Targeting hepatic pyruvate dehydrogenase kinases restores insulin signaling and mitigates ChREBP-mediated lipogenesis in diet-induced obese mice[J]. Mol Metab,2018,12:12-24.

Effects of swimming training on insulin resistance and liver PPAR-gamma signaling pathway in mice

FENG Yan-jing1, LI Yan-jun2, LIU Sun-xin3*

(1.Department of EndocrineHebei Chest HospitalShijiazhuang 050041, China; 2.Department of RespiratoryHebei Chest HospitalShijiazhuang 050041, China; 3.Department of RehabilitationXiangya Hospital of Central South UniversityHunan Province, Changsha 410008, China)

[Abstract] Objective To observe the effect of swimming training on liver fat content and peroxisome proliferator activated receptor-γ(PPAR-γ) signaling pathway in mice and discuss the mechanism of exercise improving insulin resistance. Methods Thirty-one healthy 8-week-old male C57BL/6J mice were randomly divided into normal group(n=10), high-fat group(n=10) and exercise group(n=11). Insulin resistance animal model was established by high fat diet. The exercise group was given 12 weeks swimming training. The weight of mice was recorded before and after intervention. Fasting blood glucose(FBG) and fasting insulin(FINS) were measured. Insulin resistance index(IRI) was calculated by HOMA. PPAR-γ and pyruvate dehydrogenase kinase 4(PDK4) in liver tissue were detected by reverse transcription polymerase chain reaction(RT-PCR). The expression levels of kinase 4, PDK4 and pyruvate dehydrogenase(PDH) were observed by light and electron microscopy. Results After 12 weeks of intervention, the weight of the three groups was significantly higher than that before intervention, and the weight of the high-fat group was significantly higher than that of the normal group and the exercise group(P<0.05). FINS, FBG and IRI in the high-fat group and the sports group were significantly higher than those in the normal group, while FINS, FBG and IRI in the sports group were significantly lower than those in the high-fat group(P<0.05). HE staining showed that hepatocytes in the high-fat group presented diffuse steatosis, and the cytoplasm was filled with a large number of round lipid droplets of different sizes. Lipid droplets wrap around the nucleus or cytoplasmic side, squeezing the nucleus to one side, some in signed-ring shape. Lipid droplet formation was observed occasionally in the cytoplasm of hepatocytes of mice in the exercise group. Electron microscopy showed that a large number of lipid droplets were deposited in the hepatocytes of the high-lipid group. There were residual lipofuscin-like substances in liver cells of exercise group. The expression of PPAR-γ mRNA in the high-fat group was lower than that in the normal group, the expression of PPAR-γ mRNA in the exercise group was higher than that in the normal group, the expression of PDK4 mRNA in the high-fat group and exercise group was higher than that in the normal group, and the expression of PDH mRNA was lower than that in the normal group. The expression of PPAR-γ mRNA and PDH mRNA in the exercise group was significantly higher than that in the high-fat group, and the expression increase of PDK4 mRNA was lower than that in the high-fat group(P<0.05). Conclusion Exercise can improve insulin resistance, which may be related to reducing liver steatosis in mice, up-regulating the expression of PPAR-γ mRNA in mouse liver tissue, reducing the expression of PDK4 mRNA, and increasing the expression of PDH mRNA.

[Key words] insulin resistance; peroxisome proliferator activated receptor-γ; swimming

doi:10.3969/j.issn.1007-3205.2019.10.003

[中图分类号] R587

[文献标志码]A

[文章编号]1007-3205(2019)10-1127-06

[收稿日期]2019-02-20;[修回日期]2019-03-15

[作者简介]冯彦景(1981-),女,河北石家庄人,河北省胸科医院主治医师,医学硕士,从事内分泌疾病诊治研究。

*通信作者。E-mail:heartsuixin@hotmail.com

(本文编辑:赵丽洁)