·论 著·
高脂血症是导致动脉粥样硬化(atherosclerosis,AS)的首要因素,血液中过多的脂质沉积于血管分叉处促使AS形成。血液循环中的单核/巨噬细胞被募集至AS易损血管部位,吞噬血管内脂质成分形成泡沫细胞,进而分泌多种受体如白细胞分化抗原36(cluster of differentiation36,CD36)和清道夫受体A1(scavenger receptorA1,SR-A1),Toll样家族受体2(Toll-like receptors,TLR-2)和Toll样家族受体4(Toll-like receptors,TLR-4)、炎症因子、蛋白酶等破坏斑块结构、加速AS进展,所以如何控制泡沫细胞形成是治疗AS主要和重要的切入点[1-3]。酪氨酸磷酸酶SHP-2(protein-tyrosine phosphatase SHP-2,SHP-2)参与了胚胎发育、细胞代谢、增殖、凋亡等生理过程。目前关于SHP-2在AS机制中的作用研究尚处于起步阶段。在分子水平上,SHP2主要参与众多生长因子和细胞因子及整合素受体下游的众多信号通路的调控,磷脂酰肌醇3激酶/蛋白激酶B(phosphatidylinositol 3-kinase /protein kinase B,PI3K/AKT)是细胞中重要的信号传导通路,主要调控细胞的增殖、分化、凋亡、转移等过程[4-6]。在AS的发病过程中,细胞外信号调节酶(extracellular-regulated kinases,ERK)与PI3K/AKT通路参与泡沫细胞的形成[7-9],是SHP-2调控的重要分支[10-12]。本研究采用氧化低密度脂蛋白(oxidized low-density lipoprotein,ox-LDL)和苯肼基吡唑啉酮磺酸盐1(phenylhydrazono pyrazolone sulfonate 1,PHPS1)共刺激,从体外和体内实验2个层面,以斑块成分巨噬细胞为角度观察SHP-2被PHPS1抑制后对AS进展的作用。
1.1 实验动物及药物处理 6~8周雄性apoE-/-小鼠购自常州卡文斯实验动物公司,所有小鼠饲养于河北省人民医院无特定病原体(specific pathogen free,SPF)级环境中,室温保持在(22±0.2) ℃, 给予1.25%胆固醇高脂饲料饲养,不限食水,随机分为对照组和PHPS1(1.0 mg/kg)处理组,每组14只,对照组体重17.9~22.9 g,平均(20.14±2.06) g,PHPS1处理组体重18.2~23.4 g,平均(20.23±1.97) g,均以腹腔注射为给药方式,每日注射0.2 mL,饲养4周后解剖观察。2组体重差异无统计学意义(P>0.05),具有可比性。因单只小鼠取材量少,不能满足组织学和分子生物学的实验对样本量的要求,而同一组动物之间各种条件相同,故把同组小鼠合并取材,以避免组内动物之间的偏倚,保证足够的样本量,所以此研究中每次实验最终每组样本例数并非均为14。
1.2 实验试剂和仪器设备 ox-LDL购自广州奕源生物有限公司,二甲基亚砜(dimethyl sulfoxide,DMSO)及PHPS1购自Sigma-Aldrich公司,单分散荧光微球(聚苯乙烯微球,polysciences公司),鼠抗β-actin抗体、鼠抗ERK抗体、鼠抗PI3K及AKT抗体购自proteintech公司,磷酸化-PI3K和AKT购自CST公司,DreamTaqTM Green PCR Master Mix(2X) 及Trizol试剂盒购自宝生物技术(北京)有限公司,冷冻高速离心机购自赛默飞世尔科技有限公司,Epoch CHS酶标仪购自赛默飞世尔科技有限公司,正置显微镜购自Carl Zeiss公司,石蜡切片机购自Leica 公司,体视解剖显微镜购自Leica 公司,蛋白印迹法(Western blot)电泳仪、电转移槽及电源购自北京六一生物科技有限公司,全自动凝胶成像系统购自Syngene公司,全自动荧光PCR分析仪(cobas z480)购自罗氏公司,细胞培养箱购自赛默飞世尔科技有限公司。
1.3 引物设计与合成 引物由上海生物工程公司合成,引物序列见表1。
表1 GAPDH,CD36,SR-A,TLR-2,TLR-4引物序列
Table 1 Primer sequeces of GAPDH,CD36,SR-A,TLR-2,TLR-4
引物上游下游GAPDH5′-TGTGTCCGTCGTGGATCTGA-3′5′-CCTGCTTCACCACCTTCTTGAT-3′CD365′-TCATGCCAGTCGGAGACATGCTTA-3′5′-ACCTGTCTGTACACAGTGGTGCCT-3′SR-A5′-TGAACGAGAGGATGCTGACTG-3′5′-GGAGGGGCCATTTTTAGTGC-3′TLR-25-GGCTGCTGTTTGCTGCG-3′5′-GTGCAAGCAACAGAGTTGGG-3′TLR-45′-TTCAATCCCAAGGCCCTGTC-3′5′-GTGCAAGCAACAGAGTTGGG-3′
1.4 小鼠解剖及降主动脉整体、主动脉根部切片染色 给予PHPS1处理4周后,水合氯醛腹腔麻醉apoE-/-小鼠后,眼球取血留血清。检测2组小鼠血清血脂和血糖水平。剖开腹腔和胸腔后,从左心室灌注冰生理盐水后分离出双侧颈动脉-主动脉弓-胸主动脉-腹主动脉直至髂总动脉分叉处,4%多聚甲醛固定,在体视解剖显微镜下纵行剖开,针灸针固定两侧,油红O工作液染色30 min后,用75%乙醇冲洗,解剖显微镜下拍照。4%多聚甲醛固定小鼠心脏,酒精梯度脱水做蜡块并连续切片,分别做苏木精-伊红(hematoxylineosin staining,HE)、抗MAC-2标记免疫组织化学染色、抗α-actin标记免疫组织化学染色和天狼星红染色,正置显微镜拍照评估斑块大小、斑块内巨噬细胞、平滑肌细胞和胶原成分含量。
1.5 骨髓来源巨噬细胞(bone marrow-derived macrophage,BMDM)培养及PHPS1、荧光微球、ox-LDL共刺激 ①6~8周雄性SPF级C57 BL-6J小鼠腹腔注射麻醉后,放置于75%乙醇中,在细胞超净台中无菌条件下分离股骨和胫骨,剪去双侧股骨和胫骨两端后用1.0 mL无菌注射器注射1640培养基冲洗骨髓腔收集骨髓细胞,10 000 r/min离心5 min,下层细胞饲养于含10%胎牛血清(fetal bovine serum,FBS)、1%双抗、50 μg/L 巨噬细胞集落刺激因子(macrophage colony stimulating factor,MCSF)的1640培养基重悬,计数后铺至T25培养瓶中,5%CO2 37 ℃培养。②用胰酶消化贴壁的BMDM制成细胞悬液,将无菌细胞爬片放置于六孔板底部,滴加500 μL细胞悬液,置于5% CO2细胞培养箱孵育2 h,使BMDM贴于细胞爬片上;每孔加1 200 μL 2% FBS培养基,继续孵育8 h;每孔加0.25 μL的ox-LDL(终浓度为50 μg/L)和1 μL的单分散荧光微球加或不加PHPS1刺激16 h,激光共聚焦显微镜采集图像。
1.6 Western blot分析 在液氮中研磨降主动脉,放置于无线免疫沉淀(radio immunoprecipitation assay,RIPA)裂解液中裂解血管组织30 min,4 ℃高速离心15 min,2,2-联喹啉-4,4-二甲酸二钠(bicinchoninic acid,BCA)蛋白定量法测浓度。十二烷基磺酸钠聚丙烯酰胺凝胶电泳(sodium dodecyl sulfate polyacrylamide gel electrophoresis,SDS-PAGE)分离蛋白,转膜至聚偏氟乙烯(Poly vinylidene fluoride,PVDF)膜上,5%脱脂奶粉封闭2 h,4 ℃冰箱中一抗孵育过夜,磷酸盐吐温缓冲液充分洗涤,加相应二抗室温孵育1 h,增强化学发光法显色,化学发光凝胶成像系统显影,IPP 6.0软件行灰度扫描分析, 以β-actin为内参校正目的蛋白表达量。
1.7 逆转录实时定量PCR(real-time reverse transcription quantitative polymerase chain reaction,qRT-PCR)检测CD36和SR-A1的mRNA水平 提取细胞总RNA逆转录为互补DNA(complementary DNA,cDNA),qRT-PCR检测CD36和SR-A1基因相对表达量。PCR反应体系DreamTaqTM Green PCR Master Mix(2X)12.5 μL,上下游引物各1 μL,cDNA 0.5 μL,ddH2O 10 μL,反应条件为95 ℃ 30 s,95 ℃ 5 s,60 ℃ 34 s,30个循环后68 ℃ 45 s。△△CT法计算目标基因相对表达量。
1.8 观察指标 比较2组小鼠血清血脂和血浆水平、动脉斑块大小和内容物、BMDMs内荧光强度、CD36、SR-A1、TLR-和TLR-4的mRNA表达量、磷酸化细胞外信号调节酶(phosphorylated extracellular-regulated kinases,p-ERK)、磷酸化磷脂酰肌醇3激酶(phosphorylated phosphatidylinositol 3-kinase,p-PI3K)、磷酸化蛋白激酶B(phosphorylated protein kinase B,p-AKT)蛋白含量。
1.9 统计学方法 应用SPSS 19.0统计软件分析数据。计量资料比较采用独立样本t检验。P<0.05为差异有统计学意义。
2.1 2组小鼠血清血脂和血糖水平的比较 2组甘油三酯(triglycerides,TG)、总胆固醇(total cholesterol,TC)、低密度脂蛋白胆固醇(low-density lipoprotein cholesterol,LDL-C)、高密度脂蛋白胆固醇(high-density lipoprotein cholesterol,HDL-C)和血糖(blood glucose,GLU)差异均无统计学意义(P>0.05),见表2。
表2 2组小鼠血清血脂和血糖水平的比较
Table 2 Comparison of serum lipid and blood glucose levels between two groups of mice
组别TGTCLDL-CHDL-CGLU对照组 1.61±0.5224.11±1.8412.34±3.790.33±0.208.54±1.04PHPS1组1.54±0.4623.32±1.6014.68±5.280.31±0.188.41±0.99t值0.5141.6811.8430.3770.464P值0.7250.1270.0920.8200.793
2.2 2组小鼠动脉斑块大小和内容物的比较 PHPS1组斑块内油红O面积、斑块大小、斑块内巨噬细胞含量比对照组显著增加,差异均有统计学意义(P<0.01),2组斑块内平滑肌细胞和胶原含量差异均无统计学意义(P>0.05)。见表3,4,图1,2。
表3 2组小鼠动脉油红O阳性面积/降主动脉总面积的比较
Table 3 Comparison of arterial oil red O positive area/total area of descending aorta between two groups of mice
组别油红O阳性面积/降主动脉总面积对照组 7.99±0.35PHPS1组9.56±0.62t值5.819P值<0.001
图1 PHPS1对apoE-/-小鼠AS斑块大小的影响作用
Figure 1 The impacts of PHPS1 on the areas of atherosclerotic plaques of apoE-/- mice
图2 PHPS1对apoE-/-小鼠斑块内容物的影响作用
A.对照组HE染色;B.对照组抗MAC-2标记免疫组织化学染色;C.对照组抗α-actin标记免疫组织化学染色;D.天狼星红染色;E.PHPS1组HE染色;F.PHPS1组抗MAC-2标记免疫组织化学染色;G.PHPS1组组抗α-actin标记免疫组织化学染色;H.PHPS1组天狼星红染色
Figure 2 The effects of PHPS1 on the lesional cellular components of apoE-/- mice
表4 2组小鼠动脉斑块内容物比较
Table 4 Comparison of the contents of arterial plaque between two groups of mice
组别斑块大小斑块巨噬细胞斑块平滑肌细胞斑块胶原对照组 10910±11447535±1452719±187129±23PHPS1组17430±238413490±2295535±103133±31 t值6.5325.6672.1570.311 P值<0.001<0.0010.0590.873
2.3 2组BMDMs内荧光强度比较 PHPS1组巨噬细胞内部绿色荧光强度比对照组显著增加,差异有统计学意义(P<0.01),见表5,图3。
表5 2组BMDMs内荧光强度比较
Table 5 Comparison of fluorescence intensity between two groups of BMDMs
组别相对荧光强度对照组 0.92±0.05PHPS1组1.93±0.27t值6.392P值0.002
图3 2组BMDMs内荧光强度比较
A.对照组;B.PHPS1处理组
Figure 3 Comparison of fluorescence intensity between two groups of BMDMs
2.4 2组CD36、SR-A1、TLR-2和TLR-4的mRNA表达量的比较 PHPS1组CD36和SR-A1的mRNA表达量比对照组显著升高,差异均有统计学意义(P<0.01),2组TLR-2和TLR-4的mRNA表达量差异均无统计学意义(P>0.05),见表6。
2.5 2组p-ERK、p-PI3K、p-AKT的比较 PHPS1组p-ERK、p-PI3K、p-AKT蛋白含量比对照组显著升高,差异均有统计学意义(P<0.01),见表7,图4。
表6 2组CD36、SR-A1、TLR-2和TLR-4的mRNA表达量的比较
Table 6 Comparison of mRNA expression of CD36,SR-A1,TLR-2 and TLR-4 between two groups
组别CD36SR-A1TLR-2TLR-4对照组0.75±0.120.59±0.120.82±0.080.88±0.11PHPS1组1.43±0.060.96±0.150.77±0.060.84±0.09 t值17.5716.1671.7860.971 P值<0.001<0.0010.0950.622
表7 2组p-ERK、p-PI3K、p-AKT蛋白含量的比较
Table 7 Protein expression of p-ERK、p-PI3K、p-AKT between two groups
组别P-ERK/ERKP-PI3K/PI3KP-AKT/AKT对照组 1.07±0.050.91±0.121.05±0.03PHPS1组2.81±0.151.63±0.182.06±0.34t值22.4506.8095.912P值<0.0010.0020.013
图4 2组p-ERK、p-PI3K、p-AKT蛋白含量的比较
Figure 4 Protein expression of p-ERK、p-PI3K、p-AKT between 2 groups
蛋白酪氨酸磷酸酶和激酶是维护机体、器官、细胞、信号通路的重要平衡系统,其失衡会导致多种疾病如癌症、心血管等重大常见疾病的发生,SHP-2是主要的磷酸酶家族成员,也是具有多种细胞功能的决定性蛋白,全身敲除SHP-2小鼠会导致胎鼠死亡[13]。SHP-2特异性抑制剂/化合物PHPS1可特异性与SHP-2活性位点结合从而抑制SHP-2的功能,且PHPS1经济易得,是研究SHP-2功能的理想工具。本研究采用用PHPS1和apoE-/-小鼠[4-5,13]。AS是由高脂血症启动的免疫炎症性疾病,是由高脂、高糖血症、抽烟、应激等多种因素导致血液循环中的修饰后脂质成分如氧化型、乙酰化、羧基化低密度脂蛋白、高迁移率族蛋白B1等显著增多,沉积于AS倾向性血管上(对于血管而言相当于异物入侵),从而激活固有免疫系统的单核细胞进入血管内部分化为斑块内巨噬细胞,这些巨噬细胞主要通过清道夫家族受体识别和吞噬上述脂质成分后形成泡沫细胞;其病理表现为大量泡沫细胞出现在血管内皮细胞下,构成初期斑块特征[14-16]。因此泡沫细胞形成越多,早期AS进展越快。由此可见,PHPS1影响泡沫细胞的形成程度决定了AS的进展程度。用油红O对降主动脉整体和主动脉根部AS内部泡沫细胞含量的评估表明,PHPS1加速AS进展;对斑块内容物评估的结果显示,斑块内主要为巨噬细胞源性巨噬细胞,其余成分如内皮细胞、平滑肌细胞和胶原成分极少,猜测PHPS1是通过影响巨噬细胞的功能进而加速AS进展的。本研究结果显示PHPS1并未影响apoE-/-小鼠血糖和血脂水平,提示并非是血脂启动因子影响PHPS1对泡沫细胞的形成。
本研究以PHPS1和ox-LDL干预BMDMs开展体外机制探讨,以绿色荧光微球为标记物通过激光共聚焦拍照后观察进入BMDM内部的微球数量,结果显示PHPS1显著增加了巨噬细胞的吞噬功能。既往的研究发现清道夫家族尤其是CD36、SR-A1、TLR-2和TLR-4是识别并介导ox-LDL内化、进入胞浆的主要受体类型,本研究结果显示PHPS1组CD36和SR-A1的mRNA表达量比对照组显著升高(P<0.01),但2组TLR-2和TLR-4的mRNA表达量差异均无统计学意义(P>0.05)。既往的研究表明SHP-2经ERK和PI3K/AKT通路发挥作用,但基于不同细胞、不同刺激会导致活性不同,提示SHP-2蛋白作用的复杂性,目前尚未见SHP-2抑制后ox-LDL对巨噬细胞的ERK及PI3K/AKT活性的报道[16-19],本研究结果PHPS1组p-ERK、p-PI3K、p-AKT蛋白含量比对照组显著升高(P<0.01),表明SHP-2通过影响ERK及PI3K/AKT通路蛋白的活性抑制巨噬细胞源性泡沫细胞形成,从而抑制早期AS进展。
[1] Thirunavukkarasu S,Khader SA. Advances in cardiovascular disease lipid research can provide novel insights into mycobacterial pathogenesis[J]. Front Cell Infect Microbiol,2019,9:116.
[2] Doodnauth SA,Grinstein S,Maxson ME,et al. Constitutive and stimulated macropinocytosis in macrophages: roles in immunity and in the pathogenesis of atherosclerosis[J]. Philos Trans R Soc Lond B Biol Sci,2019,374(1765):20180147.
[3] Maguire EM,Pearce SWA,Xiao QZ,et al. Foam cell formation:a new target for fighting atherosclerosis and cardiovascular disease[J].Vascul Pharmacol,2019,112:54-71.
[4] Geraldes P. Protein phosphatases and podocyte function[J]. Curr Opin Nephrol Hypertens,2018,27(1):49-55.
[5] Kan C,Yang F,Wang S. et al. SHP2-mediated signal networks in stem cell homeostasis and dysfunction[J]. Stem Cells Int,2018,2018:8351374.
[6] Sini S,Deepa D,Harikrishnan S,et al. High-density lipoprotein from subjects with coronary artery disease promotes macrophage foam cell formation: role of scavenger receptor CD36 and ERK/MAPK signaling[J]. Mol Cell Biochem,2017,427(1/2):23-34.
[7] Han XB,Li HX,Jiang YQ,et al. Upconversion nanoparticle-mediated photodynamic therapy induces autophagy and cholesterol efflux of macrophage-derived foam cells via ROS generation[J]. Cell Death Dis,2017,8(6):e2864.
[8] Tang Y,Pan B,Zhou X,et al. Wip1-dependent modulation of macrophage migration and phagocytosis[J]. Redox Biol,2017,13:665-673.
[9] Vazhappilly CG,Saleh E,Ramadan W,et al. Inhibition of SHP2 by new compounds induces differential effects on RAS/RAF/ERK and PI3K/AKT pathways in different cancer cell types[J]. Invest New Drugs,2019,37(2):252-261.
[10] Wang L,Iorio C,Yan K,et al. A ERK/RSK-mediated negative feedback loop regulates M-CSF-evoked PI3K/AKT activation in macrophages[J]. FASEB J,2018,32(2):875-887.
[11] Truong AD,Rengaraj D,Hong Y,et al. Leukocyte immunoglobulin-like receptors a2 and a6 are expressed in avian macrophages and modulate cytokine production by activating multiple signaling pathways[J]. Int J Mol Sci,2018,19(9).pii: E2710.
[12] Araki T,Mohi MG,Ismat FA,et al. Mouse model of Noonan syndrome reveals cell type-and gene dosage-dependent effects of Ptpn11 mutation[J]. Nat Med,2004,10(8):849-857.
[13] Chistiakov DA,Melnichenko AA,Myasoedova VA,et al. Mechanisms of foam cell formation in atherosclerosis[J]. J Mol Med(Berl),2017,95(11):1153-1165.
[14] Ooi BK,Goh BH,Yap WH,et al. Oxidative stress in cardiovascular diseases: involvement of Nrf2 antioxidant redox signaling in macrophage foam cells formation[J]. Int J Mol Sci,2017,18(11).pii:E2336.
[15] Lara-Guzmn OJ,Gil-Izquierdo
,Medina S,et al. Oxidized LDL triggers changes in oxidative stress and inflammatory biomarkers in human macrophages[J]. Redox Biol,2018,15:1-11.
[16] Ahmed TA,Adamopoulos C,Karoulia Z,et al. SHP2 Drives Adaptive Resistance to ERK Signaling Inhibition in Molecularly Defined Subsets of ERK-Dependent Tumors[J]. Cell Rep,2019,26(1):65-78.e5.
[17] Nichols RJ,Haderk F,Stahlhut C,et al. RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-,NF1-and RAS-driven cancers[J]. Nat Cell Biol,2018,20(9):1064-1073.
[18] Sun B,Jensen NR,Chung D,et al. Synergistic effects of SHP2 and PI3K pathway inhibitors in GAB2-overexpressing ovarian cancer[J]. Am J Cancer Res,2019,9(1):145-159.
[19] Vazhappilly CG,Saleh E,Ramadan W,et al. Inhibition of SHP2 by new compounds induces differential effects on RAS/RAF/ERK and PI3K/AKT pathways in different cancer cell types[J]. Invest New Drugs,2019,37(2):252-261.