·论 著·
近年来,近视已逐步成为全球屈光性疾病中发病率最高的类型,其中高度近视在亚洲发病率更为显著,占全球近视人群总数的27%~33%[1-4]。屈光手术是眼科临床常用的矫正屈光不正的方法,主要分为角膜屈光手术及眼内屈光手术。在角膜屈光手术中,飞秒激光小切口角膜基质透镜取出术(small incision lenticule extraction,SMILE)手术的问世,是对传统角膜屈光手术方式的革新,其避免了角膜瓣相关并发症的风险,维持更优的角膜生物力学特性[5-7]。眼内屈光手术以人工晶状体(implantable collamer lens,ICL)植入术为代表,自2014年新型中央孔型ICL V4c通过中国SFDA认证以来,ICL V4c在高度近视人群中已得到了大量应用,许多既往研究已证明ICL V4c在矫正高度近视方面具有良好的安全性、有效性及可预测性[8-9]。本研究旨在比较SMILE及ICL V4c治疗中国人高度近视的安全性、有效性、可预测性及高阶像差差异,为临床工作提供参考。
1.1 一般资料 收集2018年6月—2019年6月于沧州市中心医院近视治疗中心行屈光手术的高度近视患者60例,纳入标准为:①有摘镜意愿;② 2年内屈光度稳定(增长≤ 0.50 D);③年龄18~45岁;④术前近视球镜≥-6.0 D,最佳矫正视力(best corrected visual acuity,BCVA)≥20/25;⑤无眼部疾病史、外伤史和严重全身疾病史。⑥行屈光手术术前检查后符合相应手术要求。随机分为2组,接受SMILE手术者30例(58眼),接受ICL手术者30例(59眼),2组一般资料差异无统计学意义(P<0.05),具有可比性,见表1。
表1 2组基本资料比较
Table 1 Comparison of basic data between two groups
组别性别(例数/眼数)男性女性年龄(岁)BCVA(LogMAR)球镜度(D)柱镜度(D)等效球镜度(D)SMILE组19(36)11(22)28.50±6.18-0.01±0.02-7.15±1.22-1.00±0.74-8.55±1.26ICL组 17(34)13(25)28.76±6.88-0.02±0.01-7.20±1.52-1.37±0.78-8.90±1.68χ2/t值0.2400.4360.2811.2582.3421.632P值0.8850.6520.7790.1640.0190.103
1.2 方法 所有患者均接受术前常规检查包括术后裸眼视力(uncorrected visual acuity,UCVA),BCVA,睫状肌麻痹下电脑验光及主觉验光,眼压,裂隙灯和眼底检查,眼轴,Sirius三维角膜地形图。ICL患者还需接受角膜内皮,黄斑光学相干断层扫描及超声生物显微镜UBM检查。术后随访1年,记录2组UCVA、BCVA、屈光度、眼压及高阶像差, ICL患者定期复查角膜内皮细胞计数及拱高(ICL后表面与透明晶状体前表面顶点的垂直距离)。检查均由眼科中心专业技术人员完成。像差采集应用Sirius三维角膜地形图,像差数据以Zernile系数形式表示,记录6 mm瞳孔下总高阶像差、慧差、三叶草像差、球差的均方根值并进行统计分析。
1.2.1 SMILE组 以Visumax飞秒激光系统(3.0版 Carl Zeiss Meditec,Germany)完成SMILE手术,所有手术均由同一经验丰富术者完成。采用上方120 ° 2 mm弧形切口,角膜帽设定为110~120 μm,透镜预设直径为6.0~6.7 mm,以便所有患者预计术后角膜基质床剩余>280 μm,同时尽量减少术后炫光。根据术前屈光度及年龄,按经验过矫0.25~0.75 D以补偿屈光回退。所有手术均成功完成,无术中或术后并发症发生。
1.2.2 ICL组 手术由同一经验丰富的术者完成。选用瑞士STAAR公司的ICL V4c晶体,术前3 d 0.3%左氧氟沙星滴眼液(可乐必妥日本参天制药)滴眼预防感染。术眼行表面麻醉,颞侧角巩膜缘做3.0 mm透明角膜切口,用推注器将ICL植入前房,注入黏弹剂保护角膜内皮,待ICL自然展开后调位使其固定在睫状沟,BSS液完全清除前房黏弹剂,确保角膜切口闭合。所有手术均成功完成,无术中或术后并发症发生。
1.3 统计学方法 应用SPSS 25.0统计软件分析数据。计量资料组间比较采用t检验;计数资料比较采用χ2检验;采用Spearman相关性分析统计像差变化量与术前球镜、柱镜、等效球镜及术后残余等效球镜之间的相关性。P<0.05为差异有统计学意义。
2.1 安全性与有效性 术后SMILE组和ICL组的UCVA、安全性指数(术后 BCVA/ 术前 BCVA )、有效性指数(术后 UCVA/ 术前 BCVA )差异均无统计学意义(P>0.05)。BCVA达到术前的比例为94.8%(55/58)、96.6%(57/59)(P>0.05)。其中SMILE组40眼(68.96%)BCVA较术前无变化,14眼(24.13%)提高1行,1眼(1.72%)提高2行及以上。术前BCVA 20/20以上52眼(89.66%),术后BCVA 20/20以上58眼(100%)。ICL组36眼(61.02 %)BCVA较术前无变化,18眼(30.5%)提高1行,3眼(5.08%)提高2行及以上,术前BCVA 20/20以上50眼(84.75%),术后BCVA 20/20以上58眼(98.3%)。无1眼发生BCVA 2行及2行以上丢失。术后1年UCVA达到20/20以上者分别为53眼(91.38%)及56眼(94.91%),20/25以上者分别为58眼(100%)及59眼(100%)。见表2。
2.2 可预测性 术后1年SMILE组和ICL组平均等效球镜在±0.50 D的比例分别为86.2%(50/58)、88.1%(52/59);等效球镜度在±1.0 D的比例均为100%。SMILE组术后等效球境度高于ICL组,2组间差异有统计学意义(P<0.05),见表2。
表2 术后2组安全性指数、有效性指数、可预测性比较
Table 2 Comparison of safety index and effectiveness index between two groups after surgery
组别眼数(只)UCVA(LogMAR)BCVA(LogMAR)安全性指数有效性指数 术后等效球镜度(D)SMILE组58-0.01±0.08-0.06±0.051.05±0.160.99±0.16-0.39±0.32ICL组 59-0.03±0.05-0.06±0.051.06±0.160.99±0.13-0.15±0.27t值0.3040.0250.2160.6481.628P值0.1280.9800.8290.267<0.001
2.3 高阶像差 SMILE与ICL组相比,术前总高阶像差、水平慧差[Z(3,1)]、垂直慧差[Z(3,-1)]、斜向三叶草[Z(3,-3)]、水平三叶草[Z(3,3)]、球差[Z(4,0)]差异均无统计学意义(P>0.05),见表3。2组术后总高阶像差、球差、垂直慧差、斜向三叶草差异有统计学意义(P<0.05),见表4。SMILE组术后总高阶像差、球差、垂直慧差增加,与术前相比差异有统计学意义(P<0.05)。ICL组术后斜向三叶草增加,水平慧差减少,与术前相比差异有统计学意义(P<0.05)。SMILE组和ICL组术前与术后1年高阶像差变化值比较,SMILE组总高阶像差、球差、垂直慧差变化值高于ICL组,斜向三叶草变化值低于ICL,差异有统计学意义(P<0.05),见表5。在2组中,Spearman相关性分析均未发现2组各像差成分变化值与术前球镜、柱镜、等效球镜及术后残余等效球镜存在相关性,见表6。
表3 SMILE组和ICL组术前高阶像差比较
Table 3 Comparison of high-order aberrations between SMILE group and ICL group
组别例数总高阶像差水平慧差[Z(3,1)]垂直慧差[Z(3,-1)]斜向三叶草[Z(3,-3)]水平三叶草[Z(3,3)]球差[Z(4,0)]SMILE组580.450±0.0480.491±0.0710.260±0.0350.198±0.0280.329±0.0400.347±0.050ICL组 590.480±0.0600.514±0.0690.249±0.0400.208±0.0300.441±0.0600.397±0.047t值0.3720.5370.2540.1170.7840.901P值0.7100.5910.6010.9070.4330.367
表4 SMILE组与ICL组术后1年高阶像差比较
Table 4 Comparison of high-order aberrations between SMILE group and ICL group at 1 year after surgery
组别例数总高阶像差水平慧差[Z(3,1)]垂直慧差[Z(3,-1)]斜向三叶草[Z(3,-3)]水平三叶草[Z(3,3)]球差[Z(4,0)]SMILE组580.577±0.0220.521±0.0890.540±0.0750.223±0.0290.259±0.0361.008±0.049ICL组 590.388±0.0210.390±0.0510.223±0.0270.363±0.0460.400±0.0560.382±0.037t值5.1020.6333.7232.5171.7206.179P值<0.0010.527<0.0010.0140.085<0.001
表5 SMILE组和ICL组术前与术后1年高阶像差变化值比较
Table 5 Comparison of high-order aberrations in SMILE group and ICL group before and at 1 year after surgery
组别例数总高阶像差变化值水平慧差[Z(3,1)]变化值垂直慧差[Z(3,-1)]变化值斜向三叶草[Z(3,-3)]变化值水平三叶草[Z(3,3)]变化球差[Z(4,0)]变化值SMILE组580.131±0.0520.046±0.0960.287±0.0840.005±0.043-0.070±0.0560.670±0.047ICL组 59-0.092±0.052-0.125±0.056-0.025±0.0350.156±0.0430.041±0.061-0.013±0.049t值4.8391.5732.5472.4583.3489.942P值<0.0010.1210.0100.0170.729<0.001
表6 SMILE组和ICL组高阶像差变化值与术前球镜、柱镜、等效球镜及术后残余等效球镜的相关性
Table 6 The correlation between the variation value of higher-order aberrations and preoperative spherical, cylindrical,
spherical equivalent and postoperative residual spherical equivalent in SMILE and ICL group
组别眼数指标术前球镜r值P值术前柱镜r值P值术前等效球镜r值P值术后等效球镜r值P值SMILE组58总高阶像差变化值-0.1740.3220.1440.401-0.0200.916-0.1240.358球差变化值 -0.2090.221-0.1640.2830.1060.5770.0940.620垂直慧差变化值 -0.2400.1590.2550.1330.2450.192-0.2500.183ICL组 59斜向三叶草变化值-0.1850.2970.1370.4510.2900.102-0.2540.153水平慧差变化值 -0.1540.371-0.1750.309-0.1660.3640.0520.763
随着屈光手术技术的不断发展,手术的目的不再仅仅是获得良好的视力,视觉质量成为备受关注的课题,无论是在角膜屈光手术还是晶体屈光手术中,始终受到特别重视[10-12]。本研究是就SMILE与ICL中相匹配度数的病例进行观察,有一定实用价值。
本研究中SMILE组所有术眼BCVA均达到 20/20以上,有5.2%的人在1年时有一行BCVA的丢失,UCVA达到20/20以上者为91.38%,20/25以上者为100%,这与其他国内外的研究一致,例如,Sekundo等[13]和Pedersen等[14]报道在SMILE术后1年,分别有12%(平均等效球镜-4.68 D(0~9 D)和9%(平均等效球镜-6.78 D)的BCVA一行的丢失,术后UCVA达到20/20以上者分别为88%和57%。Kim等[15] 报道在SMILE术后1年,中低度近视组(-3~-6 D)及高度近视组(平均等效球镜-7.67 D(-6~-11 D))分别有3.4%和3.2%的BCVA一行的丢失,术后UCVA达到20/20以上者分别为93.1%和78.4%。这些既往研究中的SMILE病例平均等效球镜均小于-8.0 D,而本研究中SMILE病例均为高度近视且整体屈光度高[等效球镜度数为(-8.55±1.26) D],其安全指数与有效指数并没有明显降低,所有术眼术后UCVA均达到20/25以上,且没有出现BCVA两行或两行以上的丢失,这些结果表明在角膜厚度允许的条件下,SMILE在低、中、高度甚至超高度近视区间均具有良好的安全性及有效性。SMILE组术后平均等效球镜在±0.50 D的比例为86.2%,±1.0 D的比例为100%,Kim等[15]等曾报道中低度近视患者SMILE术后1年平均等效球镜在±0.50D的比例分别为87.9 %,±1.0 D的比例分别为96.6%;Vestergaard等[16] 和Qin等 [17]报道高度近视患者SMILE术后6个月平均等效球镜在±0.50 D的比例分别为88%和73%,±1.0 D的比例均为97%。本研究SMILE组±0.50 D比例偏低,与ICL组比较差异有统计学意义,考虑部分患者近视度数偏高,受角膜厚度限制,预期矫正球柱镜少量欠矫或设置了较少的屈光补偿,导致术后屈光度的偏高。但所有患者术后平均等效球镜均在±1.0 D之内,表示即使SMILE可预测性略低于ICL,仍在可控制范围之内。
在ICL组,与国内外研究一致[10,18-21],本研究同样发现ICL V4c矫正高度近视具有良好的安全性、有效性及可预测性。有3.4%的人在1年时有一行BCVA的丢失,国外关于ICL V4c术后3个月到3年(-7.16~-10.1 D)的报道[18-21] 显示ICL术后安全指数及有效指数均在1.0以上,无BCVA丧失,本研究平均有效指数0.99,原因可能为部分中低度散光患者急于手术,充分告知后仍选择非散光晶体,实际矫正柱镜与预期矫正柱镜存在差异,导致柱镜残留影响术后UCVA,即便如此本研究中UCVA达到20/20以上者达96.97%,20/25以上者达100%,仍提示ICL组具有良好的临床效果。
角膜屈光手术矫正近视后引起角膜前表面高阶像差增加,是导致术后视觉质量下降的主要原因。术后影响视觉质量的主要是高阶像差中的球差和慧差。本文结果显示,SMILE 矫正高度近视后总高阶像差较术前有所增加,以垂直慧差及球差增加为主,这与早期的研究一致[13,22-24]。相对于以往LASIK手术后球差与慧差的增加,SMILE术后彗差的改变以垂直慧差为主。分析其原因与其手术方式有关。SMILE手术过程中的无瓣设计可以大大减少由于角膜瓣引起的高阶像差,但手术过程中上方2 mm切口有可能导致其沿切口方向(垂直方向)慧差增大。但这一观点有待研究证实。此外,SMILE手术过程中未采用瞳孔跟踪,高度近视患者裸眼注视稳定性较弱,细微的偏心虽不至于引起明显的散光,但可能引入术源性慧差,这或许是造成术后慧差增加的原因之一。相对于SMILE组,在ICL组中,虽然从术前到术后1年的总高阶像差未见统计学差异的改变,但总体呈下降的趋势,且水平慧差减少较术前有统计学差异,原因可能为手术切口尽量位于颞侧角巩膜缘尽量靠近巩膜侧,减少了术源性像差及散光。这提示ICL V4c对于高度近视的矫正,术后视觉质量比角膜屈光手术更优。
本研究的局限性在于,首先2组病例虽然在年龄、性别、球镜及等效球镜度方面均无统计学差异,但柱镜匹配度不够;此外,只纳入了高阶像差作为视觉质量的一个指标。在后续研究中,我们将纳入对比敏感度、眼内散射指数及调制传递函数等更多指标来全面评估两组的视觉质量。本研究样本量较小,随访时间只有1年,缺乏稳定性数据,仍需更大样本,随访时间更长的研究来对比SMILE与ICL在高度近视矫正方面的更远期效果。
[1] Pan CW,Klein BE,Cotch MF,et al. Racial variations in the prevalence of refractive errors in the United States:the multi-ethnic study of atherosclerosis[J]. Am J Ophthalmol,2013,155(6):1129-1138.
[2] Saw SM,Chan YH,Wong WL,et al. Prevalence and risk factors for refractive errors in the Singapore Malay Eye Survey[J]. Ophthalmology,2008,115(10):1713-1719.
[3] Sawada A,Tomidokoro A,Araie M,et al. Refractive errors in an elderly Japanese population:the Tajimi study[J]. Ophthalmology,2008,115(2):363-370.
[4] Curtin BJ. The myopias:basic sciencean clinical management [M]. Philadelphia:Harper & Row,1985:12.
[5] Moshirfar M,McCaughey MV,Reinstein DZ,et al. Small-incision lenticule extraction[J]. J Cataract Refract Surg,2015,41(3):652-665.
[6] Mohamed-Noriega K,Riau AK,Lwin NC,et al. Early corneal nerve damage and recovery following small incision lenticule extraction(SMILE) and laser in situ keratomileusis(LASIK)[J].Invest Ophthalmol Vis Sci,2014,55(3):1823-1834.
[7] Wu D,Wang Y,Zhang L,et al. Corneal biomechanical effects:small-incision lenticule extraction versus femtosecond laser-assisted laser in situ keratomileusis[J]. J Cataract Refract Surg,2014,40(6):954-962.
[8] Lisa C,Naveiras M,Alfonso-Bartolozzi B,et al. Posterior chamber collagen copolymer phakic intraocular lens with a central hole to correct myopia:One-year follow-up[J]. J Cataract Refract Surg,2015,41(6):1153-1159.
[9] 沈晔,周天安,杜持新,等.有晶状体眼后房型人工晶状体植入矫正高度近视的临床评价[J].中华眼科杂志,2007,43(11):1000-1004.
[10] Miao H,Chen X,Tian M,et al. Refractive outcomes and optical quality after implantation of posterior chamber phakic implantable collamer lens with a central hole(ICL V4c)[J].BMC Ophthalmol,2018,18(1):141.
[11] Ondategui JC,Vilaseca M,Arjona M,et al. Optical quality after myopic photorefractive keratectomy and laser in situ keratomileusis:comparison using a double-pass system[J]. J Cataract Refract Surg,2012,38(1):16-27.
[12] Miao H,He L,Shen Y, et al. Optical quality and intraocular scattering after femtosecond laser small incision lenticule extraction[J]. J Refract Surg,2014,30(5):296-302.
[13] Sekundo W,Gertnere J,Bertelmann T,et al. One-year refractive results,contrast sensitivity,high-order aberrations and complications after myopic small-incision lenticule extraction(ReLEx SMILE)[J]. Graefes Arch Clin Exp Ophthalmol,2014,252(5):837-843.
[14] Pedersen IB,Ivarsen A,Hjortdal J. Changes in astigmatism,densitometry,and aberrations after SMILE for low to high myopic astigmatism:a 12-month prospective study[J]. J Refract Surg,2017,33(1):11-17.
[15] Kim JR,Kim BK,Mun SJ,et al. One-year outcomes of small-incision lenticule extraction(SMILE):mild to moderate myopia vs. high myopia[J]. BMC Ophthalmol,2015,15:59.
[16] Vestergaard AH,Grauslund J,Ivarsen AR,et al. Efficacy,safety,predictability,contrast sensitivity,and aberrations after femtosecond laser lenticule extraction[J]. J Cataract Refract Surg,2014,40(3):403-411.
[17] Qin B,Li M,Chen X,et al. Early visual outcomes and optical quality after femtosecond laser small-incision lenticule extraction for myopia and myopic astigmatism correction of over-10 dioptres[J]. Acta Ophthalmol,2018,96(3):e341-e346.
[18] Lisa C,Alfonso JF,Alfonso-Bartolozzi B,et al. Collagen copolymer posterior chamber phakic intraocular lens supported by the ciliary sulcus to treat myopia:one-year follow-up[J]. J Cataract Refract Surg,2015,41(1):98-104.
[19] Gasser L,Biermann J,Reinhard T. New posterior chamber phakic intraocular lens for high myopia:three-year results[J]. J Cataract Refract Surg,2015,41(8):1610-1615.
[20] Alfonso JF,Lisa C,Fernndez-Vega Cueto L,et al. Clinical outcomes after implantation of a posterior chamber collagen copolymer phakic intraocular lens with a central hole for myopic correction[J]. J Cataract Refract Surg,2013,39(6):915-921.
[21] Shimizu K,Kamiya K,Igarashi A,et al. Early clinical outcomes of implantation of posterior chamber phakic intraocular lens with a central hole(Hole ICL) for moderate to high myopia[J]. Br J Ophthalmol,2012,96(3):409-412.
[22] Li M,Zhao J,Miao H,et al. Mild decentration measured by a Scheimpflug camera and its impact on visual quality following SMILEin the early learning curve[J]. Invest Ophthalmol Vis Sci,2014 ,55(6):3886-3892.
[23] Tan DK,Tay WT,Chan C, et al.Postoperative ocular higher-order aberrations and contrast sensitivity:femtosecond lenticule extraction versus pseudo small-incision lenticule extraction[J]. J Cataract Refract Surg,2015,41(3):623-634.
[24] Chen X,Wang Y,Zhang J,et al. Comparison of ocular higher-order aberrations after SMILE and Wavefront-guided Femtosecond LASIK for myopia[J]. BMC Ophthalmol,2017,17(1):42.