·综 述·

IGF-1治疗常见中枢神经系统疾病的研究进展

汪 燕1(综述),汪萌芽2*(审校)

(1.上海市静安区市北医院神经内科,上海 200435;2.皖南医学院细胞电生理研究室,安徽 芜湖 241200)

[摘要] 随着人类寿命的延长和老龄化社会的出现,各种中枢神经系统疾病的发病率日益增长。各种神经营养因子一直是基础和临床研究关注的热点,已经明确胰岛素样生长因子1(insulin-like growth factor 1,IGF-1)在神经系统的增殖、分化、和神经功能的调控方面发挥了关键性作用,本文将对IGF-1在中枢神经系统常见疾病治疗中的研究进展作一综述。

[关键词] 中枢神经系统疾病;胰岛素样生长因子1;治疗 doi:10.3969/j.issn.1007-3205.2021.02.026

中枢神经系统(central nervous system,CNS)的发育是一个精细调控的过程,依赖于多种因素和复杂的生理生化信号途径来确保神经元的正常发生、分化、成熟和联系。神经营养因子包括胰岛素样生长因子1(insulin-like growth factor 1,IGF-1)、神经营养因子3(neurotrophin-3,NT-3)、脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)及神经生长因子(nerve growth factor,NGF)等,在大脑的发育和成熟过程中具有重要作用[1],可以说,神经环路的形成过程是由神经营养因子被激活后导致的一系列分子事件[2]组成。神经营养因子及其受体是维持突触活动的必要因素,在神经系统的增殖、分化和神经功能的调控方面发挥了关键性作用[1-2]。随着人类寿命的延长和老龄化社会的出现,各种中枢神经系统疾病的发病率正在增长,进一步探索神经营养因子的作用,为疾病寻找新的治疗靶点尤为重要。本文将对IGF-1治疗常见中枢神经系统疾病的研究进展作一综述。

1 IGF-1概述

IGF-1又称躯体化蛋白C,属胰岛素家族,与胰岛素原有40%~50%的同源性[3]。成熟的IGF-1是一种70-氨基酸单链碱基的多肽激素,相对分子质量7 460。在许多组织的胚胎发育过程中,IGF-1大量产生,出生后明显减少;成年个体中,70%~90%的IGF-1在肝脏合成,其表达受生长激素(growth hormone,GH)调节;中枢神经系统中有些细胞亦能独立于GH的作用合成IGF-1[4-5],大脑皮质、海马、脑室下嗅区、下丘、小脑和脊髓等区域中均能检测到较高水平的IGF-1[6]。可见,IGF-1是以内分泌、旁分泌或自分泌的方式在大脑中发挥作用[6-7]

通常,99%以上的IGF-1是以与胰岛素生长因子结合蛋白(insulin-like growth factor-binding protein,IGFBP)及一个酸不稳定亚基共同构成三聚体复合物形式存在于循环中[6,8]。循环IGF-1可以由脂蛋白受体相关蛋白2(lipoproteinreceptor-relatedprotein-2,LRP-2)从血液中主动转运至脑脊液,也能通过与内皮细胞上的胰岛素样生长因子1受体(insulin-like growth factor 1,IGF-1R)结合穿过血脑屏障[9]

2 IGF-1神经保护作用

IGF-1是中枢神经系统发育、成熟和可塑性的一个强有力的神经内分泌调节因子[1]。脑内IGF-1的主要功能从调控细胞生长、分化、成熟(通过有丝分裂和DNA合成)和代谢过程(葡萄糖摄取和蛋白质合成),到控制突触形成、释放神经递质和刺激神经元等过程,参与突触可塑性,是极重要的中枢神经保护元件[2]

2.1 IGF-1抑制神经细胞凋亡 IGF-1抑制神经细胞凋亡的作用具有多向性,主要涉及信号转导通路、联合Bcl-2家族共同作用以及抑制Caspase的合成等。中枢IGF1R与IGF-1结合后被激活,β亚基上的酪氨酸激酶结构域激活PI3K/mTOR/AKT1和MAPK/ERK通路,诱导其下游效应[4,6]。即,PI3K/mTOR通路激活AKT1,通过下游效应子s6激酶1(ribosomal protein s6 kinase 1,s6K1)和真核翻译起始因子4e结合蛋白1(eukaryotic translation initiation factor 4e-binding protein 1,EIF4E-BP1)启动蛋白翻译,在调节细胞循环/存活、基因表达和细胞骨架重塑方面起重要作用,还能通过增加细胞死亡的Bcl-2相关激动剂Bad磷酸化,降低Bax/Bcl-2的比值,减少细胞色素C释放,抑制细胞凋亡。AKT1通路的激活能抑制FOXO凋亡通路,并使促凋亡c-JUN-n-末端激酶(c-Jun N-terminal kinase,JNK)通路失活[6];此外,IGF-1还能激活ERK靶向核转录因子,通过MAPK/ERK通路在诱导促进细胞存活、分化、增殖、代谢和转运方面起重要作用[6]。最后,IGF-1能抑制促凋亡因子Caspase-3、Caspase-9等的合成,发挥抗凋亡作用。研究显示,上述途径之间存在显著的交叉抑制和激活,即使某一条途径被破坏,仍可能通过其他途径在下游被激活,这意味着IGF-1在抑制细胞过早死亡方面具有治疗意义[4]

2.2 IGF-1调节离子通道活性 有学者在IGF-1基因敲除小鼠的脑中发现,一种能防止钙超载并稳定钙通道的纹状体微白蛋白严重脱失,表明IGF-1可以通过直接调节钙结合蛋白而发挥神经保护作用[5]。动物实验则揭示了IGF-1通过调节L型、N型和P/Q型电压依赖性钙通道活性,使转录因子C/EBP水平迅速下降,抑制N-甲基-d-天冬氨酸(N-methyl-D-aspartic acid receptor,NMDA)受体诱导的兴奋毒性损伤,促进神经元存活[10]

2.3 IGF-1抑制过量一氧化氮(nitric oxide,NO)毒性损害作用 NO是内皮细胞中的一种气体性神经递质,能控制全身血管张力和神经元活性。IGF-1能扩张非新生血管床,降低血管阻力,增加心、脑等重要器官局部血流量,减轻神经元缺血、缺氧性损伤,减少NO的含量;IGF-1及其受体大量表达时,能阻止促发信号分子产生,增强超氧化物歧化酶、神经营养因子等神经保护分子的产生,对抗NMDA受体的兴奋毒性损害,减轻神经元损伤[8,11-12];最后,IGF-1还能通过PI3K/AKT途径抑制NO诱导的细胞凋亡和Caspase-3活化[9]

2.4 IGF-1调节大脑葡糖糖代谢 IGF/胰岛素系统在进化上非常保守,是营养敏感的信号通路,在能量代谢中起关键作用[13]。胰岛素和IGF-1有相似的下游信号通路:胰岛素或IGF-1→胰腺素受体(insulin receptor,IR)或IGF-1R→胰岛素受体底物(insulin receptor substrate,IRS)-1/2→PI3K→AKT→GSK3β[14]。在阿尔茨海默病(Alzheimer′s disease,AD)和帕金森病(Parkinson′s disease,PD)患者中已观察到IR磷酸化减少和IRS过度磷酸化增加[15],导致胰岛素和IGF-1无法激活下游分子,而当IRS被适当磷酸化时,胰岛素和IGF-1通过触发下游PI3K/AKT信号可以降低α-突触素的神经毒性和异常积累。证据表明,IGF-1/胰岛素信号和其他信号通路的相互作用参与了神经变性过程[16-18],具有神经源性能力的脑区是高度血管性的,与年龄相关的脑血管变化直接参与了神经退行性改变的病理过程,年龄相关性疾病都表现出共病性的胰岛素抵抗[13]。越来越多的证据表明,IGF-1与神经血管功能障碍、衰老以及年龄相关的神经退行性疾病密切相关[19-20]

2.5 IGF-1促进突触可塑性 长时程增强(long-term potentiation,LTP)和长时程抑制(long-term depression,LTD)是突触可塑性的两种主要形式,被用来接收和存储海马中的信息,一旦失衡将导致突触功能障碍和学习、记忆障碍。IGF-1与IGF-1R结合后,能激活PI3K/mTOR/AKT1和MAPK/ERK[3],使GSK3β磷酸化,改善海马相关任务中的长时记忆[14,21]。此外,GSK3β的过度表达会阻碍γ-氨基丁酸(γ-Aminobutyric acid,GABA)受体依赖的LTP的诱导,抑制GSK3β则通过磷酸化或去磷酸化阻止NMDA受体依赖的LTD的诱导[11,14]。分析IGF-1的可塑性机制,主要有调节谷氨酸能受体亚基,改变钙通道活性和减少GABA能传递、增强谷氨酸能传递[22-24],还有,改变神经细胞黏附分子和稳定新生血管[25],以及与脑源性生长因子或雌二醇等其他生长因子的协同作用[26]

3 IGF-1治疗常见中枢神经系统疾病的研究进展

GH/IGF-1轴参与大脑的发育、生长和功能调节,当小鼠的IGF-1缺陷时,大脑氧化损伤、水肿、凋亡以及学习和记忆能力受损会加重[9];但也能通过IGF-1替代治疗恢复[9,27]。衰老过程中IGF-1的逐渐减少可能导致神经元变性、功能障碍和一些脑血管疾病的发生发展,如肌萎缩侧索硬化、AD、PD、多系统萎缩、中风、血管性痴呆等[16],使现代社会的经济和社会负担不断增加。

3.1 中枢神经系统退行性疾病

3.1.1 PD PD是由于黑质多巴胺能神经元丢失及细胞内包涵体(Lewy小体)形成引起的退行性疾病,病因及发病机制至今仍是未知的。Ebert等[6]通过PD大鼠模型证实了IGF-1有促进多巴胺能神经元细胞存活和增值的能力。Ghazi Sherbaf等[28]发现IGF-1能剂量依赖性地减少细胞凋亡,增加体外PD模型中多巴胺能神经元的存活。临床研究显示PD患者血清IGF-1和IGFBPs水平高于对照组,IGF-1能保护黑质纹状体通路,并且在这种保护之前激活关键的促存活级联信号[29-30]。Castilla-Cortzar等[31]发现了IGF-1对作用于MAPK的神经元具有保护作用,且与剂量和时间相关。

3.1.2 AD AD是发生于老年和老年前期,以进行性认知功能下降和行为损害为特征的中枢神经系统退行性疾病。AD产生的原因与β淀粉样蛋白在大脑中的神经炎斑块聚集、tau蛋白过磷酸化所致的神经原纤维缠结以及导致神经元凋亡的炎症有关[32]。衰老过程中IGF-1表达下降,可能与老年人的认知能力下降有关[4]

IGF-1促进神经细胞的存活和修复、神经发育、突触形成、脑血管完整性,以及皮层神经元的自噬功能[17,32]。Meta分析显示IGF-1浓度与认知功能之间存在积极而显著的关系,而最相关的是注意力、执行功能和记忆[33]。一项大型多中心横断面研究发现男性AD与IGF-1及IGFBP-3水平明显下降有关,补充IGF-1可抑制β淀粉样蛋白积聚,防止小鼠AD模型的过早死亡[34];Puche等[35]研究表明,老年小鼠的血清IGF-1通过白蛋白和转甲酰胺素等载体蛋白诱导β淀粉样蛋白清除,调节脑β淀粉样蛋白水平。实验证明IGF-1直接脑室内给药及通过外周给药,均能改善小鼠模型的认知功能[7,36]。Gontier等[37]发现在AD小鼠模型的神经元中敲除IGF-1R可能通过保持自噬和改善空间记忆来促进β淀粉样蛋白的清除。鼻内给予IGF-1治疗1月龄、24月龄雄性小鼠,能改善学习、记忆和扭转抑郁样行为,并促进神经发生和Glua2含量增加[7]。此外,亦有学者提出AD患者的认知能力下降可能是齿状回神经发生减少所致,而IGF-1水平增高会增强神经发生和记忆准确性,延缓神经元退变,改善年龄相关的认知功能障碍,发挥对AD的治疗作用[38-39]

3.1.3 肌萎缩侧索硬化(amyotrophic lateral sclerosis,ALS) ALS是一种以运动神经元进行性降解为特征的致死性神经退行性疾病,最终导致肌无力/麻痹、吞咽困难和呼吸衰竭。目前无有效治疗方法,多在诊断3~4年死亡[5]。确切的病因尚不清楚,由于其多因素性质、群体异质性和固有的复杂性,使临床生存预测和干预优化变得异常困难[40]。ALS小鼠的血IGF-1水平降低,提示IGF-1缺乏可通过加速神经退行性改变和临床症状恶化,在ALS疾病过程中发挥作用[41]。而IGF-1能起到线粒体保护的作用,在中枢神经系统中给予IGF-1可增加生存率[42]。虽然ALS是一种运动神经元病,但非神经肌肉细胞,如星型胶质细胞、小胶质细胞和肌肉组织均受累及[5]。有证据显示,星形胶质细胞可能是ALS疾病发展过程中最早改变的细胞之一,被认为是目前新的治疗靶点[43-44],而IGF-1能够促进体外培养的新生小鼠海马源性干细胞增殖,并向星形胶质细胞和神经元分化[45]

3.1.4 多发性硬化(multiple sclerosis,MS) MS是一种免疫介导的中枢神经系统白质病变导致的神经元整体脱髓鞘和动作电位破坏,主要累及脑室周围、近皮质、视神经、脑干、小脑和脊髓,、研究发现MS患者的IGFBP表达增加[46]或少突胶质细胞IGF-1R表达减少[13],并且在脱髓鞘斑块的边缘发现IGF-1和IGF-1R表达上调[46-47]

Frank等[48]对7例女性患者进行了为期6个月的rhIGF-1治疗,虽临床转归无明显变化,但MRI检测到炎性病变未发生明显进展。Lewitt等[13]通过给自身免疫性脑脊髓炎模型小鼠皮下注射rhIGF-1,发现治疗组小鼠急性期尾部和肢体无力的严重程度降低,大脑和脊髓病变减少;免疫染色发现rhIGF-1治疗的小鼠大脑和脊髓中巨噬细胞样细胞减少,证实了rhIGF-1治疗能减少神经功能缺损、中枢神经系统病变大小和数目以及炎症反应的假设。

3.2 脑血管疾病 脑血管病主要包括缺血性脑卒中(ischemic stroke,IS)、脑出血、自发性蛛网膜下腔出血以及血管原因导致的认知功能的减退。流行病学研究表明,低IGF-1和IGFBP-3水平与缺血性心脏病和中风的发病率和死亡率增加有关[49]。IGF-1内分泌轴通过复杂的蛋白质相互作用网络对血管系统产生了至关重要的影响[50]

3.2.1 IGF-1与IS IS是最常见的致死和致残原因之一。急性期较高的IGF-1水平与更好的神经恢复和物理结果有关,而IGF-1水平低者,往往预示着不良的功能结局和死亡[51];随着IS患者血清IGF-1水平与临床结果呈正相关的证据越来越多,IGF-1具有神经保护作用越来越明确[49,52]。IS模型大鼠注射IGF-1治疗,可使3个月龄大鼠梗死体积减少32%,并改善神经功能学评分(neurological deficit scores,NDS)[53];在6~7个月龄大鼠中也显示了类似的结果,减少了38%的梗死体积[54]

Kim等[55]研究提示了IGF-1基因的rs 6214和rs2162697与脑卒中的发生有关。Yao等[56]研究发现IGF-1 mRNA的表达在IS中显著上调,相反,IGFBP-3 mRNA的表达在IS中明显下调。IGF-1信号通路基因的主要效应是通过基因-基因相互作用增加脑卒中风险,有学者提出IGF-1和IGFBP3的差异表达可能是IS诊断和预后的潜在生物标志物[50,57]

3.2.2 IGF-1与出血性脑卒中 老年人各型脑出血的患病率可达到50%,被认为是神经元功能逐渐受损的一个重要因素。临床和实验研究表明,正常的IGF-1水平对于维持脑微循环的结构完整性非常重要,IGF-1缺乏,特别是年龄相关的IGF-1水平下降,使脑动脉壁减弱和变薄,促使血管损伤/破裂,促进自发性脑出血的发展[58]。幼年时IGF-1缺乏也被证明会损害脑血管功能并加重高血压所致的脑微出血[59]。Fulop等[60]研究发现,IGF-1缺乏损害了血管弹性蛋白含量的适应性变化,使脑小动脉的结构不适应高血压,血管弹性降低和ECM成分失调;并且IGF-1缺乏会加剧高血压引起的脑动脉壁MMP的激活,使血管内膜发生病理重塑、血管脆性增加。

3.2.3 血管性认知障碍(vascular cognitive impairment,VCI) VCI指的是一组可归因于脑血管系统病理状态导致的认知障碍的一大类综合征。主要损害执行功能、近记忆、注意和语言等高级认知功能,亦可伴有精神症状[61]

研究表明,年龄相关的循环IGF-1水平下降可导致脑微血管的功能损害[11],与血管性痴呆风险有关[7],补充IGF-1能诱导海马血管生成和神经发生,敲除IGF-1基因可使小鼠神经血管解偶联[62]。在认知缺陷的受试者中发现,血IGF-1水平降低是VD和中风的危险因素[63]。外周注射IGF-1可以穿过血脑屏障,通过IGF-1/AKT途径改善认知缺陷,可作为VCI潜在治疗方法的重要证据[64]

4 小结与展望

随着研究的深入,IGF-1的生物学作用机制的面纱被层层揭开,其在神经生物调节网络中的作用亦越来越被重视。体内、外试验及人体药物试验研究等发现,IGF-1对CNS具有保护作用和营养作用,能够影响神经细胞的生长、存活和分化,并且动物和临床试验均已证实了其安全性和耐受性,而有效性和治疗途径的探索也一直在进行中,这些都预示了IGF-1可能成为最有潜力的CNS疾病治疗药物之一。

[参考文献]

[1] Dyer AH,Vahdatpour C,Sanfeliu A,et al. The role of insulin-like growth factor 1(IGF-1) in brain development,maturation and neuroplasticity[J]. Neurosci,2016,325:89-99.

[2] Szczesny E,lusarczyk J,Giombik K,et al. Possible contribution of IGF-1 to depressive disorder[J]. Pharmacol Rep,2013,65(6):1622-1631.

[3] Zhang W,Yang B,Weng HD,et al. Wheel running improves motor function and spinal cord plasticity in mice with genetic absence of the corticospinal tract[J]. Front Cell Neurosci,2019,13:106.

[4] Costales J,Kolevzon A. The therapeutic potential of insulin-like growth factor-1 in central nervous system disordes[J]. Neurosci Biobehav Rev,2016,63:207-222.

[5] Jordan K,Murphy J,Singh A,et al. Astrocyte-Mediated neuromodulatory regulation in preclinical ALS:a metadata analysis[J]. Front Cell Neurosci,2018,12:491.

[6] Ebert AD,Beres AJ,Barber AE,et al. Human neural progenitor cells over-expressing IGF-1 protect dopamine neurons and restore function in a rat model of Parkinson′s disease[J]. Exp Neurol, 2008, 209(1):213-223.

[7] Marshall J,Dolan BM,Garcia EP,et al. Calcium channel and NMDA receptor act ivities differentially regulate nuclear C /EBPB levels to control neuronal survival[J]. Neuron,2003,39(4):625-639.

[8] Morales-Garza LA,Puche JE,Aguirre GA,et al. Experimental approach to IGF-1 therapy in CCl4-induced acute liver damage in healthy controls and mice with partial IGF-1 defciency[J]. J Transl Med,2017,15(1):96.

[9] Castilla-Cortzar I,Iturrieta I,García-Magario M,et al. Neurotrophic factors and their receptors are altered by the mere partial IGF-1 defciency[J]. Neurosci,2019,404:445-458.

[10] 杜雨欣,李经伦. IGF-1与缺血缺氧性脑病[J]. 西南军医,2015,17(1):68-70.

[11] Hort J,Vališ M,Kuĉa K,et al. Vascular Cognitive impairment:information from animal models on the pathogenic mechanisms of cognitive defificits[J]. Int J Mol Sci,2019,20(10):2405.

[12] Lara-Diaz VJ,Castilla-Cortazar I,Martín-Estal I,et al. IGF-1 modulates gene expression of proteinsinvolved in infammation,cytoskeleton,and liver architecture[J]. J Physiol Biochem,2017,73(2):245-258.

[13] Lewitt MS,Boyd GW. The role of insulin-like growth factors and insulin-like growth factor-binding proteins in the nervous system[J]. Biochem Insights,2019,12:1178626419842176.

[14] Yang LY,Wang HY,Liu LJ,et al.The role of insulin/IGF-1/PI3K/Akt/GSK3β signaling in parkinson′s disease dementia[J]. Front Neurosci,2018,12:73.

[15] Talbot K,Wang HY,Kazi H,et al. Demonstrated brain insulin resistance in Alzheimer′s disease patients is associated with IGF-1 resistance,IRS-1 dysregulation,and cognitive decline[J]. J Clin Invest,2012,122(4):1316-1338.

[16] Gubbi S,Quipildor GF,Barzilai N,et al. 40 YEARS of IGF1:IGF1:the Jekyll and Hyde of the aging brain[J]. J Mol Endocrinol,2018,61(1):T171-T185.

[17] Labandeira-Garcia JL,Rodríguez-Perez AI,Garrido-Gil P,et al. Brain renin-angiotensin system and microglial polarization:implications for aging and neurodegeneration[J]. Front Aging Neurosci,2017,9:129.

[18] Bryan MR,Bowman AB. Manganese and the insulin-IGF signaling network in Huntington′s disease and other neurodegenerative disorders[J]. Adv Neurobiol,2017,18:113-142.

[19] Tarantini S,Tran CHT,Gordon GR,et al. Impaired neurovascular coupling in aging and Alzheimer′s disease:contribution of astrocyte dysfunction and endothelial impairment to cognitive decline[J]. Exp Gerontol,2017,94:52-58.

[20] Fidaleo M,Cavallucci V,Pani G. Nutrients,neurogenesis and brain ageing:from disease mechanisms to therapeutic opportunities[J]. Biochem Pharmacol,2017,141:63-76.

[21] Peineau S,Taghibiglou C,Bradley C,et al. LTP inhibits LTD in the Hippocampus via regulation of GSK3beta[J]. Neuron,2007,53(5):703-717.

[22] Aberg ND,Brywe KG,Isgaard J. Aspects of growth hormone and insulin-like growth factor-I related to neuroprotection,regeneration,and functional plasticity in the adult brain[J]. Sci World J,2006,6:53-80.

[23] Corvin AP,Molinos I,Little G,et al. Insulin-like growth factor 1(IGF1) and its active peptide(1-3) IGF1 enhance the expression of synaptic markers in neuronal circuits through diferent cellular mechanisms[J]. Neurosci Lett,2012,520(1):51-55.

[24] Llorens-Martīn M,Torres-Alemn I,Trejo JL. Mechanisms mediating brain plasticity:IGF1 and adult hippocampal neurogenesis[J]. Neurosci,2009,15(2):134-148.

[25] Jacobo SMP,Kazlauskas A. Insulin-like growth factor 1(IGF-1) stabilizes nascent blood vessels[J]. J Biol Chem,2015,290(10):6349-6360.

[26] McCusker RH,McCrea K,Zunich S,et al. Insulin-like growth factor-I enhances the biological activity of brain-derived neurotrophic factor on cerebrocortical neurons[J]. J Neuroimmunol,2006,179(1/2):186-190.

[27] Puche JE,Muoz ,García-Magario M,et al. Partial IGF-1 defciency induces brain oxidative damage and edema,which are ameliorated by replacement therapy[J]. Biofactors,2016,42(1):60-79.

[28] Ghazi Sherbaf F,Mohajer B,Ashraf-Ganjouei A,et al. Serum insulin-like growth factor-1 in Parkinson′s disease;study of cerebrospinal fuid biomarkers and white matter microstructure[J]. Front Endocrinol,2018,9:608.

[29] Li DH,He YC,Quinn TJ,et al. Serum insulin-like growth factor-1 in patients with de novo,drug naïve Parkinson′s disease:a meta-analysis[J]. PLoS One,2015,10(12):e0144755.

[30] Zuo L,Motherwell MS. The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson′s disease[J]. Gene,2013,532(1):18-23.

[31] Castilla-Cortzar I,Aguirre GA,Femat-Roldn G,et al. Is insulin like growth factor 1 involved in Parkinson′s disease development?[J]. J Transl Med,2020,18(1):70.

[32] Logan S,Pharaoh GA ,Marlin MC,et al. Insulin-like growth factor receptor signaling regulates working memory,mitochondrial metabolism,and amyloidbeta uptake in astrocytes[J]. Mol Metab,2018,9:141-155.

[33] Arwert LI,Deijen JB,Witlox J,et al. The influence of growth hormone(GH) substitution on patient-reported outcomes and cognitive functions in GH-deficient patients:a meta-analysis[J]. Growth Horm IGF Res,2005,15(1):47-54.

[34] Duron E,Funalot B,Brunel N,et al. Insulin-like growth factor-I and insulin-like growth factor binding protein-3 in Alzheimer′s disease[J]. J Clin Endocrinol Metab,2012,97(12):4673-4681.

[35] Puche JE,Castilla-Cortzar I. Human conditions of insulin-like growth factor-1(IGF-1) deficiency[J]. J Transl Med,2012,10:224.

[36] Sonntag WE,Deak F,Ashpole N,et al. Insulin-like growth factor-1 in CNS and cerebrovascular aging[J]. Front Aging Neurosci,2013,5:27.

[37] Gontier G,George C,Chaker Z,et al. Blocking IGF signaling in adult neurons alleviates alzheimer′s disease pathologythrough amyloid-beta clearance[J]. J Neurosci,2015,35:11500-11513.

[38] Morel GR,León ML,Uriarte M,et al. Therapeutic potential of IGF-1 on hippocampal neurogenesis and function during aging[J]. Neurogenesis(Austin),2017,4(1):e1259709.

[39] Bianchi VE,Locatelli V,Rizzi L.Neurotrophic and Neuroregenerative Effects of GH/IGF1[J]. Int J Mol Sci,2017,18(11):2441.

[40] Khamankar N,Coan G,Weaver B,et al. Associative increases in amyotrophic lateral sclerosis survival duration with noninvasive ventilation initiation and usage protocols[J]. Front Neurol,2018,9:578.

[41] Wen D,Cui C,Duan WS,et al. The role of insulin-like growth factor 1 in ALS cell and mouse models:a mitochondrial protector[J]. Brain Res Bull,2019,144:1-13.

[42] Lin HQ,Hu HJ,Duan WS,et al. Intramuscular delivery of scAAV9-hIGF1 prolongs survival in the hSOD1G93A ALS mouse model via upregulation of D-amino acid oxidase[J]. Mol Neurobiol,2018,55(1):682-695.

[43] Pehar M,Harlan BA,Killoy KM,et al. Role and therapeutic potential of astrocytes in amyotrophic lateral sclerosis[J]. Curr Pharm Des,2017,23(33):5010-5021.

[44] Nagel G,Peter RS,Rosenbohm A,et al. Association of insulin-like growth factor 1 concentrations with risk for and prognosis of amyotrophic lateral sclerosis-results from the ALS registry swabia[J]. Sci Rep,2020,10(1):736.

[45] 朱裕华,胡安康,陈仁金,等.胰岛素样生长因子-1诱导新生小鼠海马源性神经干细胞增殖分化的研究[J].徐州医学院学报,2013,33(2):76-79.

[46] Wilczak N,Chesik D,Hoekstra D,et al. IGF binding protein alterations on periplaque oligodendrocytes in multiple sclerosis:implications for remyelination[J]. Neurochem Int,2008,52(8):1431-1435.

[47] Ontaneda D,Thompson AJ,Fox RJ,et al. Progressive multiple sclerosis:prospects for disease therapy,repair,and restoration of function[J]. Lancet,2017,389(10076):1357-1366.

[48] Frank JA,Richert N,Lewis B,et al. A pilot study of recombinant insulin-like growth factor-1 in seven multiple sderosis patients[J]. Mult Scler,2002,8(1):24-29.

[49] Saber H,Himali JJ,Beiser AS,et al. Serum insulin-like growth factor 1 and the risk of ischemic stroke:the framingham study[J]. Stroke,2017,48(7):1760-1765.

[50] Yao YS,Zhu H,Zhu LJ,et al. A comprehensive contribution of genetic variations of the insulin-like growth factor 1 signalling pathway to stroke susceptibility[J]. Atherosclerosis,2020,296:59-65.

[51] Tang JH,Ma LL,Yu TX,et al. Insulin-like growth factor-1 as a prognostic marker in patients with acute ischemic stroke[J]. PLoS One,2014,9(6):e99186.

[52] berg ND,berg D,Jood K,et al. Altered levels of circulating insulin-like growth factor I(IGF-I) following ischemic stroke are associated with outcome-a prospective observational study[J]. BMC Neurol,2018,18(1):106.

[53] Geyter DD,Smedt AD,Stoop W,et al. Central IGF-1 receptors in the brain are instrumental to neuroprotection by systemically injected IGF-1 in a rat model for ischemic stroke[J]. CNS Neurosci Ther,2016,22(7):611-616.

[54] Serhan A,Boddeke E,Kooijman R. Insulin-like growth factor-1 is neuroprotective in aged rats with ischemic stroke[J]. Front Aging Neurosci,2019,11:349.

[55] Kim HJ,Kim SK,Park HJ,et al. Polymorphisms of IGFI contribute to the development of ischemic stroke[J]. Exp Ther Med,2012,3(1):93-98.

[56] Yao YS,Zhu LJ,Fang ZM,et al. Insulin-like growth factor-1 and receptor contribute genetic susceptibility to hypertension in a han Chinese population[J]. Am J Hypertens,2018,31(4):422-430.

[57] Zhu H,Zhu LJ,Fang ZM,et al. Common variants at somatostatin are significantly associated with hypertension incidence in smoking and drinking populations[J]. J Am Soc Hypertens,2018,12(3):230-237,e12.

[58] Toth P,Tarantini S,Ashpole NM,et al. IGF-1 deficiency impairs neurovascular coupling in mice:Implications for cerebromicrovascular aging[J]. Aging Cell,2015,14(6):1034-1044.

[59] Tarantini S,Valcarcel-Ares NM,Yabluchanskiy A,et al. Insulin-like growth factor-1 deficiency exacerbates hypertension-induced cerebral microhemorrhages in mice,mimicking the aging phenotype[J]. Aging Cell,2017,16(3):469-479.

[60] Fulop GA,Ramirez-Perez FI,Kiss T,et al. IGF-1 deficiency promotes pathological remodeling of cerebral arteries:a potential mechanism contributing to the pathogenesis of intracerebral hemorrhages in aging[J]. J Gerontol A Biol Sci Med Sci,2019,74(4):446-454.

[61] Graff-Radford J. Vascular cognitive impairment[J]. Minneap(Minn Continuum),2019,25(1):147-164.

[62] Tarantini S,Tucsek Z,Valcarcel-Ares MN,et al. Circulating IGF-1 deficiency exacerbates hypertension-induced microvascular rarefaction in the mouse hippocampus and retrosplenialcortex:implications for cerebromicrovascular and brain aging[J]. Age,2016,38(4):273-289.

[63] Quinlan P,Horvath A,Nordlund A,et al. Low serum insulin-like growth factor-1(IGF-1) level is associated with increased risk of vascular dementia[J]. Psychoneuroendocrinology,2017,86:169-175.

[64] Ma XW,Xu WW,Zhang ZX,et al. Salvianolic acid b ameliorates cognitive deficits through IGF-1/Akt pathway in rats with vascular dementia[J]. Cell Physiol Biochem,2017,43(4):1381-1391.

[收稿日期]2020-06-04

[基金项目]国家自然科学基金面上项目(31271155)

[作者简介]汪燕(1984-),女,安徽芜湖人,上海市静安区市北医院主治医师,理学硕士,从事神经内科疾病诊治和研究。

*通信作者。E-mail:wangmy@wnmc.edu.cn

[中图分类号] R742.89

[文献标志码]A

[文章编号]1007-3205(2021)02-0240-06

(本文编辑:杜媛鲲)