河北医科大学学报 ›› 2025, Vol. 46 ›› Issue (5): 520-526.doi: 10.3969/j.issn.1007-3205.2025.05.005

• • 上一篇    下一篇

可独立行走的脑小血管病患者跌倒风险预测模型的构建与验证

  

  1. 1.河北医科大学第三医院神经内科,河北 石家庄 050051;2.河北医科大第三医院医学影像科,河北 石家庄 050051

  • 出版日期:2025-05-25 发布日期:2025-05-23
  • 作者简介:刘万虎(1998-),男,河北廊坊人,河北医科大学第三医院医学硕士研究生,从事神经系统疾病诊治研究。

  • 基金资助:
    河北省自然科学基金课题(H2024206046);河北省医学科学研究课题计划(20240198)

Establishment and validation of a prediction model for fall risk in independently ambulatory patients with cerebral small vessel disease

  1. 1.Department of Neurology, the Third Hospital of Hebei Medical University, Shijiazhuang 
    050051, China; 2.Department of Medical Imaging, the Third Hospital of 
    Hebei Medical University, Shijiazhuang 050051, China

  • Online:2025-05-25 Published:2025-05-23

摘要: 目的 基于神经影像学特征及临床因素探究可独立行走的脑小血管病(cerebral small vessel disease,CSVD)患者跌倒风险的危险因素,建立预测模型并验证其效能。
方法 选择2021年9月—2024年9月就诊于河北医科大学第三医院可独立行走的CSVD患者315例,按6∶4比例分为建模人群(196例)和验证人群(119例)。采用起立-行走量表评估可独立行走的CSVD患者跌倒风险。在建模人群中行单因素及多因素分析可独立行走的CSVD患者跌倒风险的独立危险因素,构建跌倒风险预测模型并绘制诺莫图。分别在建模人群与验证人群中采用受试者工作特征(receiver operating characteristic,ROC)曲线下面积(area under the curve,AUC)、校准曲线评估模型的区分度、校准度。
结果 与无跌倒风险组患者相比,存在跌倒风险组患者的高龄、高血压病、骨折史、认知障碍、中重度白质高信号(white matter hyperintensity, WMH)、中重度EPVS、腔隙例数占比高,差异有统计学意义(P<0.05)。多因素Logistic回归分析显示, 年龄(95%CI:1.356~3.256)、高血压病(95%CI:1.119~6.682)、认知障碍(95%CI:1.146~7.423)、中重度WMH(95%CI:1.487~8.363)、腔隙(95%CI:1.965~9.636)是可独立行走的CSVD患者跌倒风险的独立危险因素(P<0.05)。基于上述影响因素构建可独立行走的脑小血管病跌倒风险的诺莫图模型, 建模人群和验证人群的ROC曲线下面积分别为 0.855、0.921,模型区分度高,校准曲线显示该预测模型与实际观测结果有较好的一致性。
结论 高龄、高血压、中重度WMH、腔隙、认知障碍是可独立行走的CSVD患者跌倒风险的独立危险因素,依据本研究建立的临床预测模型可以较好的预测可独立行走的CSVD患者跌倒风险。


关键词: 脑血管障碍, 意外跌倒, 预测模型

Abstract: Objective To investigate the factors influencing the fall risk of independently ambulatory patients with cerebral small vessel disease(CSVD) based on neuroimaging characteristics and clinical factors, to develop a prediction model and to validate its efficacy. 
Methods In total, 315 independently ambulatory patients with CSVD were selected in the Third Hospital of Hebei Medical University from Sept. 2021 to Sept. 2024 and divided into modelling group (n=196) and validation group (n=119) according to the 6∶4 principle. The timed up and go test was used to assess the fall risk of CSVD patients who could walk independently. Univariate and multivariate analyses was used to analyze independent risk factors for falls in independently ambulatory CSVD patients, a fall risk prediction model was constructed and a nomogram was plotted. The area under the receiver operating characteristic (ROC) curve (AUC) and calibration curve were used to evaluate the differentiation and calibration degree of the model in the modeling population and the verification population respectively. 
Results Compared with the group without fall risk, the proportion of patients with advanced age, hypertension, history of fracture, cognitive impairment, moderate-to-severe white matter hyperintensity (WMH), moderate-to-severe perivascular spaces (EPVS), and lacunes was higher in the group with fall risk, showing significant differences (P<0.05). Multivariate Logistic regression analysis showed that age (95%CI: 1.356-3.256), hypertension (95%CI: 1.119-6.682), cognitive impairment (95%CI: 1.146-7.423), moderate to severe WMH (95%CI: 1.487-8.363) and lacune (95%CI: 1.965-9.636) were independent risk factors for falls in independently ambulatory patients with CSVD (P<0.05). Based on the above influencing factors, a nomogram model of the fall risk of independently ambulatory patients with CSVD was constructed. The AUC of the modeling population and the verification population was 0.855 and 0.921 respectively, indicating a high degree of model differentiation. The calibration curve showed that the prediction model was in good agreement with the actual observation results. 
Conclusion Advanced age, hypertension, moderate-to-severe WMH, lacune, and cognitive impairment are independent risk factors for falls in independently ambulatory CSVD patients, and the clinical prediction model developed based on this study can better predict fall risk in independently ambulatory CSVD patients. 


Key words: cerebrovascular disorders, accidental falls, prediction model