河北医科大学学报 ›› 2025, Vol. 46 ›› Issue (1): 99-107.doi: 10.3969/j.issn.1007-3205.2025.01.017

• • 上一篇    下一篇

基因检测及超声灰度值预测结直肠癌肝转移患者消融治疗预后及影响因素分析

  

  1. 1.河北省张家口市第一医院超声科,河北 张家口 075000;2.河北北方学院附属第一医院普外科,
    河北 张家口 075000;3.河北医科大学第四医院外二科,河北 石家庄 050011;
    4.河北北方学院附属第一医院超声医学科,河北 张家口 075000

  • 出版日期:2025-01-25 发布日期:2025-01-22
  • 作者简介:孙宇(1987-),女,河北涿鹿人,河北省张家口市第一医院主治医师,医学学士,从事医学超声诊断研究。
  • 基金资助:
    河北省重点研发计划(22377786D);河北省医学科学研究课题计划(20220028);河北省政府资助临床医学优秀人才培养项目

Gene detection and value of gray-scale ultrasound for predicting the prognosis and influencing factors analysis of ablation treatment in patients with colorectal liver metastasis

  1. 1.Department of Ultrasound, the First Hospital of Zhangjiakou City, Hebei Province, Zhangjiakou 
    075000, China; 2.Department of General Surgery, the First Affiliated Hospital of Hebei North 
    University, Zhangjiakou 075000, China; 3.The Second Department of External Surgery, 
    the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China; 
    4.Department of Ultrasound Medicine, the First Affiliated Hospital of 
    Hebei North University, Zhangjiakou 075000, China

  • Online:2025-01-25 Published:2025-01-22

摘要: 目的 从基因检测、临床特征及超声检查指征等多维度探讨结直肠癌异时性肝转移根治性消融治疗后无进展生存时间(progression free survival,PFS)和(overall survival,OS)的主要影响因素,初步确定结直肠癌肝转移消融治疗的主要预后风险因素并建立预测模型。
方法 多中心回顾性筛选符合条件的结直肠癌肝转移患者298例,随机分为模型训练集208例,验证集90例。收集所有患者临床资料、肿瘤临床特征、影像学和实验室常规指标,采用单因素和多因素Cox模型分析方法确定结直肠癌肝转移患者预后的主要影响因素,根据Cox模型的风险结果比对独立因素赋值构建1年PFS和3年OS的风险预测列线图并进行曲线验证。
结果 单因素分析结果显示,患者性别、年龄、超声灰度值≥100、靶向药物治疗是患者较差PFS的影响因素(P<0.05)。多因素分析结果显示,患者性别为男性、年龄≥60岁、超声灰度值≥100、患者接受靶向治疗是患者较差PFS的影响因素(P<0.05)。单因素分析结果显示,患者BRAF基因检测突变、超声灰度值≥100是患者较差OS的影响因素(P<0.05)。多因素分析结果显示,患者BRAF基因突变型和肝脏超声灰度值≥100是患者较差OS的影响因素(P<0.05)。基于对训练集数据进行模型分析的结果,将相关性较高的几个变量纳入患者根治性消融的预后模型,绘制1年PFS和3年OS预后评价模型列线图,1年PFS总体概率=27.5×(女性)+31×(年龄<60)+100×(超声灰度值<100)+22.5×(未接受靶向治疗),3年OS总体概率=25×(BRAF野生型)+100×(超声灰度值<100)。1年PFS预测模型在训练集中,AUC值为0.88,95%CI:0.76~1.00;在验证集中,AUC值为0.81,95%CI:0.71~0.90。3年OS预测模型在训练集中,AUC值为0.80,95%CI:0.66~0.94;在验证集中,AUC值为0.54,95%CI:0.36~0.72。
结论 超声灰度值、基因突变情况和治疗方式等是结直肠癌异时性肝转移PFS和OS的影响因素,通过对预后风险因素的综合模型可以对患者中长期预后进行有效预测。


关键词: 结直肠肿瘤, 肿瘤转移, 基因检测, 超声灰度值

Abstract: Objective To explore the key factors influencing progression-free survival (PFS) and overall survival (OS) after radical ablation therapy for metachronous liver metastases from colorectal cancer(CRC) from multiple dimensions, including genetic testing, clinical characteristics, and ultrasound indicators, to identify the primary prognostic risk factors for ablation treatment of colorectal liver metastases (CRLM) and to establish a predictive model. 
Methods A retrospective, multicenter analysis was conducted, including 298 eligible patients with CRLM. These patients were randomly divided into a model training cohort (n=208) and a validation cohort (n=90). Clinical data, clinical characteristics of tumor, imaging, and routine laboratory indicators were collected for all patients. Univariate and multivariate Cox regression analyses were used to identify the main factors affecting prognosis in patients with CRLM. Based on the Cox model′s risk results, independent factors were assigned scores, and risk prediction nomograms were constructed to predict 1-year PFS and 3-year OS, followed by curve validation. 
Results Univariate analysis identified patient gender, age, ultrasound grayscale values ≥100, and targeted therapy as factors associated with poorer PFS (P<0.05). Multivariate analysis confirmed that male gender, age ≥60, value of gray-scale ultrasound ≥100, and targeted therapy were influencing factors of poorer PFS (P<0.05). Similarly, univariate analysis showed that BRAF gene mutation and value of gray-scale ultrasound ≥100 were associated with poorer OS (P<0.05). Multivariate analysis confirmed BRAF gene mutation and value of gray-scale ultrasound ≥100 as significant factors influencing OS (P<0.05). Based on the model analysis of the training set data, several highly correlated variables were included in the prognostic model for radical ablation. Nomograms were developed to predict 1-year PFS and 3-year OS, where the overall probability of 1-year PFS was calculated as follows: 27.5×(female)+ 31×(age<60)+100×(value of gray-scale ultrasound<100)+ 22.5×(no targeted therapy). The 3-year OS probability was calculated as: 25×(BRAF wild-type) + 100×(value of gray-scale ultrasound<100). The area under the ROC curve (AUC) of the 1-year PFS prediction model was 0.88 (95%CI: 0.76-1.00) in the training cohort and 0.81 (95%CI: 0.71-0.90) in the validation cohort. For the 3-year OS prediction model, the AUC value was 0.80 (95%CI: 0.66-0.94) in the training cohort and 0.54 (95%CI: 0.36-0.72) in the validation cohort. 
Conclusion Value of gray-scale ultrasound, genetic mutations, and treatment modalities are influencing factors of PFS and OS in patients with metachronous liver metastases from CRC. By integrating these prognostic risk factors into a comprehensive model, it may effectively predict the medium-and long-term outcomes for these patients. 


Key words: colorectal neoplasms, neoplasm metastasis, genetic testing, value of grayscale ultrasound