河北医科大学学报 ›› 2024, Vol. 45 ›› Issue (3): 278-283.doi: 10.3969/j.issn.1007-3205.2024.03.005

• • 上一篇    下一篇

肺结节良恶性概率预测模型的建立与验证

  

  1. 1.川北医学院附属医院呼吸与危重症医学科,四川 南充 637000;2.四川省广安市人民医院呼吸与危重症医学,四川 广安 638001

  • 出版日期:2024-03-25 发布日期:2024-04-07
  • 作者简介:黄语嫣(1994-),女,四川德阳人,川北医学院附属医院医学硕士研究生,从事呼吸肿瘤诊治研究。
  • 基金资助:
    广安市肺结节/肺癌全程管理研究(2020SYF03)

Establishment and validation of probability prediction model for benign and malignant pulmonary nodules

  1. 1.Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of North Sichuan 
    Medical College, Nanchong 637000, China; 2.Department of Respiratory and 
    Critical Care Medicine, Guang′an People′s Hospital, 
    Sichuan Province, Guang′an 638001, China

  • Online:2024-03-25 Published:2024-04-07

摘要: 目的 通过分析肺结节的临床特征和影像学表现,筛选影响肺结节良恶性的因素,并建立及验证预测模型,为肺结节良恶性的鉴别提供参考依据。
方法 选取肺结节患者1 160例为研究对象,所有患者按2〖DK〗∶1随机分为2组,建模组773例,验证组387例。建模组数据进行单因素分析,差异有统计学意义的变量纳入二元Logistic回归分析,获得肺结节良恶性病变的独立预测因子,建立良恶性概率预测模型。验证并比较本研究模型与传统经典模型Mayo模型、Brock模型、VA模型、北京大学人民医院模型之间的预测性能。
结果 性别、年龄、肺癌家族史、结节质地、结节直径、分叶征、空泡征、血管集束征、钙化征、细支气管征、胸膜牵拉征为肺结节良恶性病变的独立预测因子(P<0.05)。本研究模型的受试者工作特征曲线下面积(0.856)高于Mayo模型(0.604)、Brock模型(0.447)、VA模型(0.569)及北京大学人民医院模型(0.677),其预测敏感度为86.10%,特异度为73.70%。
结论 本研究构建的预测模型具有良好的诊断效能,可能优于传统经典模型,对临床医生鉴别肺结节的良恶性有一定的参考价值。


关键词: 多发性肺结节, 肺肿瘤, 预测模型

Abstract: Objective To analyze the clinical characteristics and imaging manifestations of pulmonary nodules, to screen the factors that affect the malignancy of pulmonary nodules, and to establish and validate prediction models, thus providing a reference basis for the differentiation of benign and malignant pulmonary nodules. 
Methods A total of 1 160 patients with pulmonary nodules were selected as the research subjects, and then randomly divided into two groups at a ratio of 2〖DK〗∶1: a modeling group (n=773) and a validation group (n=387). Univariate analysis was conducted on the data of modeling group, and variables with statistically significant differences were included in binary logistic regression analysis to obtain independent predictive factors for benign and malignant pulmonary nodules, and to establish a probability prediction model for benign and malignant lesions. The predictive performance of this model with traditional classic models such as Mayo model, Brock model, VA model, and model of Peking University People′s Hospital was verified and compared. 
Results Age, gender, family history of lung cancer, nodule texture, nodule diameter, lobulation sign, vacuolar sign, vascular bundle sign, calcification sign, bronchiolitis sign, and pleural traction sign were independent predictors of benign and malignant pulmonary nodules (P<0.05). The area under the receiver operating characteristic (ROC) curve (AUC) of this model (0.856) was higher than that of the Mayo model (0.604), Brock model (0.447), VA model (0.569), and model of Peking University People′s Hospital (0.677), with a predictive sensitivity of 86.10% and a specificity of 73.70%. 
Conclusion The prediction model constructed in this study is with good diagnostic efficacy, which may be superior to the traditional models, which has greater reference value for clinicians to distinguish the benign and malignant pulmonary nodules. 


Key words: multiple pulmonary nodules, lung neoplasms, prediction model