河北医科大学学报 ›› 2025, Vol. 46 ›› Issue (4): 474-482.doi: 10.3969/j.issn.1007-3205.2025.04.016

• • 上一篇    下一篇

CT关键特征结合临床检验参数在预测PTC患者颈部淋巴转移中的价值

  

  1. 安徽理工大学第一附属医院,淮南市第一人民医院CT室,安徽 淮南 232001

  • 出版日期:2025-04-25 发布日期:2025-04-17
  • 作者简介:韩书婷(1987-),女,安徽亳州人,安徽理工大学第一附属医院主治医师,医学学士,从事医学影像诊断研究。

  • 基金资助:
    淮南市指导性科技计划项目(2022169)

Value of key features of CT combined with clinical laboratory parameters in predicting cervical lymphatic metastasis in patients with PTC

  1. Department of CT Room, the First Hospital of Anhui University of Science and Technology, the First People′s Hospital of Huainan City, Huainan 232001, China

  • Online:2025-04-25 Published:2025-04-17

摘要: 目的 结合CT关键影像特征、术前甲状腺功能检测和临床基本信息分析甲状腺乳头状癌(papillary thyroid carcinoma,PTC)中颈部淋巴结转移(lymph node metastasis,LNM)和颈侧区淋巴结转移(lateral lymph node metastasis,LLNM)患者转移的影响因素,并建立可视化转移预测模型。
方法 选择2021年1月—2024年4月在安徽理工大学第一附属医院收治的PTC患者122例,转移组51例、未转移组71例,转移组中LLNM 30例;对上述患者的临床病理特征进行回顾性分析,构建Logistics回归模型和随机森林模型进行多变量分析,筛选并验证可能与LNM或LLNM相关的变量;绘制诺莫图可视化与PTC患者的淋巴转移相关的独立风险值。
结果 转移组和非转移组多灶性、微钙化、包膜受侵、肿瘤部位、肿瘤大小、血清促甲状腺激素(thyroid-stimulating hormone,TSH)、游离三碘甲状原氨酸(free triiodothyronine,FT3)水平差异有统计学意义(P<0.05)。多因素Logistic回归分析结果显示,微钙化、肿瘤位置、肿瘤大小、血清TSH、FT3水平是LNM的危险因素(P<0.05)。非LLNM组和LLNM组肿瘤部位、肿瘤大小、血清TSH水平差异有统计学意义(P<0.05)。多因素Logistic回归分析结果显示,转移组中肿瘤大小、血清TSH水平是LLNM的危险因素(P<0.05)。受试者工作特征(receiver operating characteristic,ROC)曲线[曲线下面积(area under curve,AUC)分别为0.884和0.894]表明模型具有良好的预测能力,临床决策曲线和影响曲线展示了良好的临床指导功能;通过随机森林模型验证上述模型,结论与其一致;对各组训练集分析显示,在LNM相关因素中多灶性、TSH、FT3、肿瘤大小、肿瘤部位排名最高,在LLNM相关因素中TSH、肿瘤大小排名最高;验证集ROC曲线(AUC分别为0.845和0.862)进一步证明上述模型具有良好的预测能力。
结论 通过绘制可视化诺莫图,发现多灶性、TSH、FT3、肿瘤大小、肿瘤部位等临床特征与LNM密切相关,TSH和肿瘤大小是LLNM发生的危险因素,这一发现将有助于临床医生为PTC患者制定个性化临床治疗方案。


关键词: 甲状腺癌, 乳头状, 淋巴转移, 影响因素分析

Abstract: Objective To identify the influencing factors for cervical lymph node metastasis (LNM) and lateral lymph node metastasis (LLNM) in papillary thyroid carcinoma (PTC) by combining key CT imaging features, preoperative thyroid function tests, and clinical baseline information, and to construct a visualized predictive model for metastasis. 
 Methods We selected 122 PTC patients treated from January 2021 to Apirl 2024 at the First Affiliated Hospital of Anhui University of Science and Technology, and divided them into the metastasis group (n=51), including 30 patients with LLNM, and non-metastasis group (n=71). Clinical and pathological features of these patients were analyzed retrospectively. Logistic regression and random forest models were constructed to identify and validate variables potentially associated with LNM or LLNM. Visualized nomograms were developed to display the independent risk values related to lymphatic metastasis in PTC patients. 
 Results Significant differences were observed between the metastasis and non-metastasis groups in terms of multifocality, microcalcification, capsular invasion, tumor location, tumor size, serum thyroid-stimulating hormone (TSH), and free triiodothyronine (FT3) levels (P<0.05). Multivariate Logistic regression analysis identified microcalcification, tumor location, tumor size, serum TSH, and FT3 levels as risk factors for LNM (P<0.05). Significant differences in tumor location, tumor size, and serum TSH levels were found between the non-LLNM and LLNM groups (P<0.05). Multivariate Logistic regression analysis indicated that tumor size and serum TSH levels were risk factors for LLNM in the metastasis group (P<0.05). The receiver operating characteristic (ROC) curves [the area under curve (AUC) values of 0.884 and 0.894] demonstrated good predictive performance of the models. Clinical decision curves and calibration curves showed favorable clinical guidance functions. The random forest model validated the above models with consistent conclusions. Analysis of the training sets revealed that multifocality, TSH, FT3, tumor size, and tumor location were the highest-ranked factors associated with LNM, while TSH and tumor size were the highest-ranked factors associated with LLNM. The validation set ROC curves (AUC values of 0.845 and 0.862) further confirmed the good predictive ability of the models. 
 Conclusion The visualized nomograms reveal that clinical features such as multifocality, TSH, FT3, tumor size, and tumor location are closely associated with LNM, while TSH and tumor size are risk factors for LLNM. These findings could assist clinicians in developing personalized treatment plans for PTC patients. 


Key words: thyroid cancer, papillary, lymphatic metastasis, influencing factor analysis